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ABSTRACT
Binary adders are a critical building block in integrated circuit
(IC) design. In addition to the widely used 32/64/128-bit adders,
large (1024/2048 bits) adders are important in applications such as
cryptography. However, most current adder design methods tar-
get regular bitwidths, and cannot efficiently generate large adders
with good performance. In practice, adders are often integrated
into circuits such as a multiplier-accumulator (MAC), resulting in
complex non-uniform input arrival times. To address these chal-
lenges, we propose a new algorithm for efficiently generating high-
quality adders for non-uniform input arrival times. It is based on a
novel divide-and-conquer-friendly problem formulation, and can
effectively generate and maintain the most useful adder structures
through dynamic programming. Experimental results show that it
outperforms the current state-of-the-art methods in both quality
and runtime. The adders generated by our algorithm have 2.8%,
8.3%, and 10.3% reductions in delay, area, and power, respectively,
compared to those generated by a commercial synthesis tool.

1 INTRODUCTION
Chip functions can generally be divided into the following cate-
gories: datapath operators, memory elements, control structures,
and special-purpose cells (I/O, power distribution, clock generation
and distribution, and analog/RF)[10]. Common datapath opera-
tors include adders, subtractors, multipliers, comparators, shifters,
counters, etc. Among these datapath operators, adders are the most
fundamental and widely used. They are not only used for additions,
but also an essential component of subtractors (𝑎−𝑏 is computed by
𝑎+(−𝑏)), comparators (𝑎 and 𝑏 are compared by comparing 𝑎+(−𝑏)
and 0), and multipliers (typically designed with a compressor tree
followed by an adder). The wide application of adders in datapath
operators makes adder design an important and rewarding problem.

In addition to common bitwidths such as 32 and 64, which are
widely used inmodern computing platforms, extremely large adders
are also common in certain applications, such as RSA chips in
cryptography (see [11] for a 1024-bit RSA chip design). However,
most existing adder design algorithms are either unable to generate
adders for large bitwidths or are unable to design adders that meet
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(a) 𝑠𝑖𝑧𝑒 = 19, 𝑑𝑒𝑝𝑡ℎ = 5; Input depths = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
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(b) 𝑠𝑖𝑧𝑒 = 21, 𝑑𝑒𝑝𝑡ℎ = 5; Input depths = 1, 1, 0, 1, 2, 1, 1, 0, 0, 1, 2, 1, 2

Figure 1: Our parallel prefix circuits for (a) uniform input
depths, and (b) non-uniform input depths

the desired performance, power, and area (PPA) requirements. For
example, the state-of-the-art adder design algorithm [6, 7] is search-
based and can only generate adders up to 128 bits. The algorithm by
Liu et al. [2] is refinement-based and cannot effectively minimize
area, although it scales well to large bitwidths. New algorithms are
needed to design large high-quality adders.

However, large bitwidth is not the only challenge in modern
adder design. In practice, adders are often part of a complex cir-
cuit such as a multiplier-accumulator (MAC), which requires co-
optimization of both units and introduces non-uniform input arrival
times for adders. For example, Figure 1a and Figure 1b show two
prefix circuits for adder design with and without the non-uniform
input arrival times. The presence of non-uniform input arrival times
greatly increases the complexity of adder design, resulting in both
lower quality and lower efficiency of current adder algorithms.

To overcome these challenges, we propose a new method for
designing high-quality parallel prefix circuits under non-uniform
input arrival times. Parallel prefix circuits are a typical formulation
of the adder design problem and has been widely adopted [1–3, 5–
9, 12]. Our main contributions are summarized as follows.
• We propose a new divide-and-conquer-friendly problem formu-
lation for the design of parallel prefix circuits, which enables the
efficient divide-and-conquer methodology for the complex prefix
circuit design problem.

• Based on the divide-and-conquer-friendly formulation, we de-
velop a dynamic programming algorithm that can effectively
identify and efficiently maintain the best candidate structures
during divide and conquer.
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• The framework of the method is very flexible and can be naturally
extended to consider non-uniform input arrival times.
We evaluate our algorithm by comparing our prefix circuits

with those generated by the state-of-the-art works and comparing
our prefix adders with those generated by a commercial synthesis
tool. Experimental results show that our prefix circuits achieve the
minimum size in every test case, and our prefix adders outperform
the commercial tool in delay, area, and power by 2.8%, 8.3%, and
10.3%, respectively.

2 PRELIMINARIES
2.1 Parallel Prefix Adders
The binary addition problem is defined as follows. Given two 𝑛-
bit integers 𝑎 and 𝑏 (𝑎𝑖 and 𝑏𝑖 represent the 𝑖th bit of 𝑎 and 𝑏

respectively, 𝑖 = 1, ..., 𝑛), calculate 𝑠 = 𝑎 + 𝑏. 𝑠 is an integer of 𝑛 + 1
bits, and 𝑠𝑛+1 is the carry.

Parallel prefix adders are constructed based on binary signals
𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒 and 𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒 , 𝑝𝑖, 𝑗 and 𝑔𝑖, 𝑗 (1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛). 𝑔𝑖, 𝑗 is 1 if
and only if adding the 𝑖th to 𝑗th bits of 𝑎 and 𝑏 generates a carry.
For example, we say that 110 + 011 (= 1001) 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑠 because a
carry is produced. 𝑝𝑖, 𝑗 is 1 if and only if adding the 𝑖th to 𝑗th bits
of 𝑎 and 𝑏 propagates a carry (i.e., generating a carry-out when a
carry-in is received). For example, we say that 110 + 001 (= 111)
𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒𝑠 . 𝑔𝑖, 𝑗 and 𝑝𝑖, 𝑗 can be computed by

(1) 𝑝𝑖,𝑖 = 𝑎𝑖 ⊕ 𝑏𝑖 and 𝑔𝑖,𝑖 = 𝑎𝑖 · 𝑏𝑖
(2) 𝑝𝑖, 𝑗 = 𝑝𝑖,𝑘 · 𝑝𝑘+1, 𝑗 for any integer 𝑘 ∈ [𝑖, 𝑗 − 1]
(3) 𝑔𝑖, 𝑗 = 𝑔𝑘+1, 𝑗 + 𝑔𝑖,𝑘 · 𝑝𝑘+1, 𝑗 for any integer 𝑘 ∈ [𝑖, 𝑗 − 1]
Our goal is to compute 𝑔1,𝑖−1 for every 𝑖 ≤ 𝑛 + 1, which can be

used to compute 𝑠 : 𝑠𝑖 = 𝑔1,𝑖−1 ⊕ 𝑎𝑖 ⊕𝑏𝑖 . Parallel prefix adders group
the computations of 𝑔𝑖, 𝑗 and 𝑝𝑖, 𝑗 by choosing a common merging
point 𝑘 : (𝑔𝑖, 𝑗 , 𝑝𝑖, 𝑗 ) = (𝑔, 𝑝)𝑖, 𝑗 = (𝑔, 𝑝)𝑖,𝑘 ◦ (𝑔, 𝑝)𝑘+1, 𝑗 = (𝑔𝑘+1, 𝑗 +𝑔𝑖,𝑘 ·
𝑝𝑘+1, 𝑗 , 𝑝𝑖,𝑘 · 𝑝𝑘+1, 𝑗 ), where ◦ defines a binary associative operator.
This allows the problem to be transformed into a parallel prefix
circuit design problem given in the following subsection.

2.2 Parallel Prefix Circuits
A parallel prefix circuit takes 𝑛 inputs 𝑥𝑖 , and computes 𝑛 outputs
𝑦𝑖 = 𝑥1 ◦ 𝑥2 ◦ ... ◦ 𝑥𝑖 , 𝑖 = 1, ..., 𝑛 in parallel, where ◦ is a binary
associative operator. In the context of adders, 𝑥𝑖 is (𝑔, 𝑝)𝑖,𝑖 and
𝑦𝑖 is (𝑔, 𝑝)1,𝑖 . We use 𝑥𝑖,𝑖 = 𝑥𝑖 to represent the inputs and 𝑥𝑖, 𝑗 to
represent the node computing 𝑥𝑖 ◦ ... ◦ 𝑥 𝑗 . We use 𝑥𝑖, 𝑗 = 𝑥𝑖,𝑘 ◦
𝑥𝑘+1, 𝑗 to denote that 𝑥𝑖, 𝑗 is computed from its left fanin 𝑥𝑖,𝑘 and
right fanin 𝑥𝑘+1, 𝑗 . 𝑑𝑒𝑝𝑡ℎ(𝑥𝑖, 𝑗 ) denotes the depth of node 𝑥𝑖, 𝑗 . The
depth of an input node is 0 if not specified, and the depth of a
non-input node 𝑥𝑖, 𝑗 with 𝑥𝑖, 𝑗 = 𝑥𝑖,𝑘 ◦ 𝑥𝑘+1, 𝑗 is recursively defined
as max {𝑑𝑒𝑝𝑡ℎ(𝑥𝑖,𝑘 ), 𝑑𝑒𝑝𝑡ℎ(𝑥𝑘+1, 𝑗 )} + 1. The 𝑑𝑒𝑝𝑡ℎ and 𝑠𝑖𝑧𝑒 of a
prefix circuit are the maximum depth of its nodes and the number
of nodes in it (excluding input nodes). The problems of prefix circuit
design can be formally defined as:
Problem 1. 𝑃1(𝑁, 𝐷): Given two integers 𝑁 and 𝐷 , construct an
𝑁 -bit prefix circuit of depth 𝐷 with minimized size.
Problem 2. 𝑃2(𝑁, 𝐷,𝑄): Given integers 𝑁 , 𝐷 and 𝑄𝑖 (1 ≤ 𝑖 ≤ 𝑁 )
where 𝑑𝑒𝑝𝑡ℎ(𝑥𝑖 ) = 𝑄𝑖 (𝑥𝑖 is the input node at bit 𝑖), construct an
𝑁 -input prefix circuit of depth 𝐷 with minimized size.

Left problem Right problem

Left problem Right problem

𝑎

𝑐 𝑑

𝑒

𝑓 𝑔

𝑏

Figure 2: A divide and conquer example. The black and red
dots are the given inputs and target outputs respectively.

Problem 2 is more general and practical than Problem 1, because
adders are usually used together with other components, and Prob-
lem 2 can dynamically generate a better structure according to the
input arrival times. We will first present our solution for Problem 1,
followed by a natural generalization to Problem 2.

3 ALGORITHM
3.1 Motivating Example
In this subsection, we illustrate how to use divide and conquer for
Problem 1 using a simple example. After explaining this example,
we summarize some observations that lead to the development of a
divide-and-conquer-friendly auxiliary problem formulation.

The example, 𝑃1(8, 3), is to construct an 8-input prefix circuit
of depth 3, as shown in Figure 2. The sub-figures in Figure 2 are
numbered from (𝑎) to (𝑔) and are marked in the upper left corner.
The black and red dots are the inputs and outputs respectively. The
outputs in Figure 2(a) are placed at depth 3 to indicate the depth
constraint of 3. Note that we may require an output to be computed
at a smaller depth. For example, in Figure 2(b), 𝑥1,4 is required to be
computed at depth 2 (which is smaller than 3) to ensure that 𝑥1,8
can meet the depth constraint.

Starting from Figure 2(a), we choose to compute 𝑥1,8 by 𝑥1,4 ◦𝑥5,8
and obtain Figure 2(b), which can be divided into two subproblems
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shown in Figure 2(c) and (d). The left subproblem in Figure 2(c)
takes inputs 𝑥1 to 𝑥4 and computes 𝑥1,𝑖 for each 𝑖 ∈ [1, 4], while
the right subproblem in Figure 2(d) takes inputs 𝑥1,4 and 𝑥5 to 𝑥8,
and computes 𝑥1,𝑖 for every 𝑖 ∈ [5, 7] and 𝑥5,8. Note that 𝑥1,4 is the
prefix result of 𝑥1 to 𝑥4 and is useful for computing 𝑥1,𝑖 for 𝑖 ∈ [5, 7].
We continue with the example in Figure 2(d) and choose to compute
𝑥5,8 = 𝑥5,6 ◦ 𝑥7,8 and 𝑥1,6 = 𝑥1,4 ◦ 𝑥5,6 (Figure 2(e)), and convert the
remaining problem into two problems as shown in Figure 2(f) and
Figure 2(g). The left problem in Figure 2(f) takes inputs 𝑥1,4, 𝑥5 and
𝑥6 to compute 𝑥1,5 and 𝑥5,6, and the right problem in Figure 2(g)
takes inputs 𝑥1,4, 𝑥5,6, 𝑥7 and 𝑥8 to compute 𝑥1,7 and 𝑥7,8.

This example shows that the prefix circuit construction problem
can be broken down recursively into subproblems sharing common
input and output patterns. For input, there are𝑚 bits in front with
non-zero and decreasing input depths followed by 𝑛 bits with zero
input depths. For output, we need to compute the prefix result for
each of the last𝑛 bits (except the last bit, for which 𝑥𝑚+1,𝑚+𝑛 instead
of 𝑥1,𝑚+𝑛 should be computed) under some depth constraints. To
illustrate this, for the original problem shown in Figure 2(a),𝑚 = 0
and 𝑛 = 8; for the subproblem shown in Figure 2(d),𝑚 = 1, 𝑛 = 4
and the input depth of the first bit, 𝑥1,4, is 2; for the subproblem
shown in Figure 2(g),𝑚 = 2, 𝑛 = 2 and the input depths of the first
two bits, 𝑥1,4 and 𝑥5,6, are 2 and 1 respectively.

3.2 Auxiliary Problem Definition
This subsection introduces an auxiliary problem formulation 𝐴𝑃1
that (i) has a divide-and-conquer-friendly structure, leading to an
efficient dynamic programming solution, and (ii) can help solve
Problem 1, as 𝑃1 is a special case of 𝐴𝑃1.

Problem 𝐴𝑃1(𝑛,𝑑, [𝑝0, ..., 𝑝𝑚]): Given a circuit 𝐺 with the fol-
lowing properties, find the minimum number of nodes that need
to be added in order to compute 𝑥𝑚+1,𝑚+𝑛 at depth 𝑑 and 𝑥1,𝑖 at
depth 𝑝0 for each 𝑖 ∈ [𝑚 + 1,𝑚 + 𝑛 − 1].

(1) 𝐺 has𝑚 + 𝑛 inputs with 𝑑𝑒𝑝𝑡ℎ(𝑥𝑖 ) = 𝑝𝑖 for 𝑖 ∈ [1,𝑚] and
𝑑𝑒𝑝𝑡ℎ(𝑥𝑖 ) = 0 for 𝑖 ∈ [𝑚 + 1,𝑚 + 𝑛].

(2) 𝑝0 > 𝑝1 > 𝑝2 > ... > 𝑝𝑚 ≥ 𝑑 .
(3) 𝐺 has node 𝑥𝑖, 𝑗 computed by 𝑥𝑖 ◦ 𝑥𝑖+1, 𝑗 for any 𝑖 and 𝑗 s.t.

1 ≤ 𝑖 < 𝑗 ≤ 𝑚.
We say that the first𝑚 bits are “fully connected” according to

property 3, because 𝑥𝑖, 𝑗 exists for any pair of 𝑖 and 𝑗 satisfying
1 ≤ 𝑖 < 𝑗 ≤ 𝑚. This “fully-connected” part carries rich informa-
tion that is important to the “to-be-computed” part (i.e., the last 𝑛
bits). Variable𝑚 is not explicitly included as a parameter in Prob-
lem 𝐴𝑃1 because it can be inferred from the number of elements in
[𝑝0, ..., 𝑝𝑚]. 𝑑𝑒𝑝𝑡ℎ(𝑥𝑖, 𝑗 ) = 𝑑𝑒𝑝𝑡ℎ(𝑥𝑖 ) + 1 (1 ≤ 𝑖 < 𝑗 ≤ 𝑚) can also
be inferred from property 3.

We use 𝐴𝑃1(5, 3, [11, 9, 7, 6, 4, 3]) in Figure 3a as an example for
illustration. The first𝑚 = 5 inputs have depths 9, 7, 6, 4, 3 and the
depths of the last 𝑛 = 5 inputs are all 0. It also has all 𝑥𝑎,𝑏 =

𝑥𝑎 ◦ 𝑥𝑎+1,𝑏 for any 1 ≤ 𝑎 < 𝑏 ≤ 5. 𝐴𝑃1(5, 3, [11, 9, 7, 6, 4, 3]) is the
minimum number of new nodes that need to be added in order to
compute 𝑥6,10 at depth 3, and compute 𝑥1,6, 𝑥1,7, 𝑥1,8 and 𝑥1,9 at
depth 11. These target outputs are marked red in Figure 3a. The
answer of 𝐴𝑃1(5, 3, [11, 9, 7, 6, 4, 3]) is 9, and a feasible solution of
adding 9 nodes is shown in Figure 3b.

Solutions to 𝑃1(𝑁, 𝐷) can be obtained by solving𝐴𝑃1(𝑁, 𝐷, [𝐷]).

“fully-connected” part        “to-be-computed” part 

(a)𝐴𝑃1(5, 3, [11, 9, 7, 6, 4, 3] )
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Figure 3: 𝐴𝑃1(5, 3, [11, 9, 7, 6, 4, 3]) = 9 (blue nodes)

3.3 Overview of the Algorithm
To solve Problem𝐴𝑃1, we design an algorithm that first enumerates
the computations of two output nodes and then divides the remain-
ing problem into two subproblems. The enumeration is necessary
for the divide and conquer and important for the final quality. We
will illustrate our algorithm with an example in this subsection and
present more technical details in the following subsections.

The example is𝐴𝑃1(5, 3, [9, 7, 6, 4, 3]) in Figure 4 (a), whose fully-
connected and to-be-computed parts are bits 1 to 4 and bits 5 to
9 respectively. The target outputs we want to generate are 𝑥1,5,
𝑥1,6, 𝑥1,7, 𝑥1,8 and 𝑥5,9, which are marked in red and placed at the
corresponding maximum allowed depths.

First, we consider how to generate 𝑥5,9 at depth 3. The compu-
tation of 𝑥5,9 can be described by an integer variable 𝑖 ∈ [5, 8],
which gives 𝑥5,9 = 𝑥5,𝑖 ◦ 𝑥𝑖+1,9. Two examples with 𝑖 = 6 and 𝑖 = 7
are shown in Figure 4 (b) and Figure 4 (c) respectively. This step
completes target output 𝑥5,9, but introduces two additional target
outputs, 𝑥5,𝑖 and 𝑥𝑖+1,9.

Second, we consider how to derive the left subproblem. Take
𝑖 = 7 in Figure 4 (c) as an example. We highlight the nodes that
form the left subproblem in Figure 4 (d) and show the formal left
subproblem in Figure 4 (e). It has the same fully-connected part as
the original problem, and takes bits 5 to 7 as the to-be-computed
part. The depth constraint of output node 𝑥5,7 is 2, because it is
a fanin of 𝑥5,9 whose depth constraint is 3. The other two output
nodes, 𝑥1,5 and 𝑥1,6, are directly inherited from the original problem
and thus have an unchanged depth constraint of 9.

Third, we consider how to compute 𝑥1,𝑖 at depth 9. We use an
integer variable 𝑗 ∈ {1, 3, 4} to describe the computation. The case
of 𝑗 = 2 is not considered because its resulting prefix circuits will be
worse than those generated by setting 𝑗 ∈ {1, 3, 4}. In Figure 4 (c),
the threeways of computing𝑥1,7 with 𝑗 equal to 1, 3 and 4 are shown
in subfigures (f), (i) and (l) of Figure 4 respectively. The case 𝑗 = 1
gives 𝑥1,7 = 𝑥1,4◦𝑥5,7, while 𝑗 = 3 gives 𝑥1,7 = 𝑥1◦(𝑥2◦(𝑥3,4◦𝑥5,7)).

Lastly, we consider how to derive the right subproblem given
𝑖 and 𝑗 . For the examples in subfigures (f), (i) and (l), the relevant
nodes for the right subproblems are highlighted in subfigures (g), (j)
and (m) respectively. In Figure 4 (g), the right subproblem takes 𝑥1,4
and 𝑥5,7 as its fully-connected part, and bits 8 and 9 as the to-be-
computed part. Nodes 𝑥1,4, 𝑥5,7, 𝑥8 and 𝑥9 in the original problem
will become 𝑥1, 𝑥2, 𝑥3 and 𝑥4 in the right subproblem respectively,
as shown in Figure 4 (h).
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Figure 4: Flow of solving 𝑃 (5, 3, [9, 7, 6, 4, 3])

3.4 Enumeration
Enumerating 𝑖. Variable 𝑖 determines how 𝑥𝑚+1,𝑚+𝑛 is computed:
𝑥𝑚+1,𝑚+𝑛 = 𝑥𝑚+1,𝑖 ◦ 𝑥𝑖+1,𝑚+𝑛 . The construction of 𝑥𝑚+1,𝑖 and
𝑥𝑖+1,𝑚+𝑛 , which are the two fanins of 𝑥𝑚+1,𝑚+𝑛 , will be done by the
left and right subproblems respectively. Our algorithm enumerates
𝑖 from𝑚 + 1 to𝑚 +𝑛 − 1, covering all cases of computing 𝑥𝑚+1,𝑚+𝑛 .
Enumerating 𝑗 . Variable 𝑗 ∈ [1,𝑚] describes how 𝑥1,𝑖 is com-
puted: 𝑥1,𝑖 = 𝑥1 ◦ (𝑥2 ◦ (...𝑥 𝑗−1 ◦ (𝑥 𝑗,𝑚 ◦𝑥𝑚+1,𝑖 ))). This leads to the
construction of 𝑥 𝑗,𝑖 = 𝑥 𝑗,𝑚 ◦ 𝑥𝑚+1,𝑖 , and 𝑥𝑘,𝑖 = 𝑥𝑘 ◦ 𝑥𝑘+1,𝑖 for every
𝑘 ∈ [1, 𝑗 − 1]. We first compute 𝑥 𝑗,𝑖 and then 𝑥 𝑗−1,𝑖 , 𝑥 𝑗−2,𝑖 , ..., 𝑥1,𝑖
in order. In Figure 4 (f), 𝑗 equals 1 and 𝑥1,7 = 𝑥1,4 ◦𝑥5,7 is computed.
In Figure 4 (i), 𝑗 equals 3 and we computes 𝑥3,7, 𝑥2,7 and 𝑥1,7. In
Figure 4 (l), 𝑗 equals 4 and 𝑥4,7, 𝑥3,7, 𝑥2,7 and 𝑥1,7 are computed
in order. This computing scheme ensures that a fully-connected
subcircuit can be formed as the fully-connected part of the right
subproblem.

However, we need to verify that this fully-connected subcircuit
has depth-decreasing inputs (property 2 of 𝐴𝑃1) in order to use it
for the right subproblem. The necessary condition for this is for 𝑗 to
satisfy 𝑗 =𝑚 or 𝑝 𝑗 + 1 < 𝑝 𝑗−1 (analysis omitted due to page limit).
Fortunately, we are able to show that the restriction on 𝑗 does not
affect the quality of the algorithm, because the final prefix circuits of

the unconsidered cases ( 𝑗 does not satisfy 𝑗 =𝑚 and 𝑝 𝑗 + 1 < 𝑝 𝑗−1)
are not better than those generated from the considered cases in
terms of both size and depth, according to Theorem 1. Proof of
Theorem 1 is not provided here due to page limit.
Theorem 1. Given problem 𝐴𝑃1(𝑛,𝑑, [𝑝0, ..., 𝑝𝑚]), let 𝑆 = {𝑚} ∪{
𝑗 ∈ [1,𝑚 − 1] : 𝑝 𝑗 + 1 < 𝑝 𝑗−1

}
and 𝑇 = {1, ...,𝑚} − 𝑆 . For any in-

teger 𝑢 ∈ 𝑇 , let 𝑣 be the smallest integer in 𝑆 s.t. 𝑣 > 𝑢. The final
prefix circuits generated by using 𝑗 = 𝑣 are better than or as good as
those generated by 𝑗 = 𝑢 in terms of depth and size.

3.5 Divide and Conquer
Given problem𝐴𝑃1(𝑛,𝑑, [𝑝0, ..., 𝑝𝑚]), the goal is to compute 𝑥1,𝑡 at
depth 𝑝0 for every 𝑡 ∈ [𝑚 + 1,𝑚 + 𝑛 − 1] and to compute 𝑥𝑚+1,𝑚+𝑛
at depth 𝑑 , according to the definition of 𝐴𝑃1. The enumeration of
𝑖 computes one target output 𝑥𝑚+1,𝑚+𝑛 at depth 𝑑 , and introduces
two more target outputs 𝑥𝑚+1,𝑖 and 𝑥𝑖+1,𝑚+𝑛 at depth 𝑑 − 1. The
enumeration of 𝑗 computes 𝑥1,𝑖 . After the enumeration step, the
target outputs become 𝑥𝑚+1,𝑖 , 𝑥𝑖+1,𝑚+𝑛 and 𝑥1,𝑡 for every 𝑡 ∈ [𝑚 +
1, 𝑖−1] ∪ [𝑖+1,𝑚+𝑛−1], which will be handled by the subproblems.
The left subproblem computes 𝑥𝑚+1,𝑖 and 𝑥1,𝑡 for 𝑡 ∈ [𝑚 + 1, 𝑖 − 1],
while the right subproblem computes 𝑥𝑖+1,𝑚+𝑛 and 𝑥1,𝑡 for 𝑡 ∈ [𝑖 +
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Table 1: Comparison of Parallel Prefix Circuit Size

Bitwidth 32 64 128 256 512 1024 Average
Depth 5 6 7 6 7 8 7 8 9 8 9 10 11 9 10 11 12 10 11 12 13 Time (s)
[12] N/A 56 55 N/A N/A 118 N/A N/A 245 N/A N/A N/A 499 N/A N/A N/A 1010 N/A N/A
[6, 7] 74 56 55 167 126 118 364 276 250 N/A N/A N/A >100
Ours 74 56 55 167 125 118 364 272 245 773 575 504 499 1614 1190 1033 1010 3327 2437 2105 2035 <1

1,𝑚 +𝑛 − 1]. According to the target outputs of the left subproblem,
its to-be-computed part is the (𝑚 + 1)-th to the 𝑖-th bits of the
original problem. Its fully-connected part is the same as that of
the original problem, which provides information of the first 𝑚
bits. Precisely, the left subproblem is 𝐴𝑃1(𝑖 −𝑚,𝑑 − 1, [𝑝0, ..., 𝑝𝑚]).
𝐴𝑃1(3, 2, [9, 7, 6, 4, 3]) in Figure 4 (e) is the left subproblem for 𝑖 = 7.

The right subproblem is more complex. According to the prob-
lem division described above, the to-be-computed part of the right
subproblem is the (𝑖 + 1)-th to the (𝑚 + 𝑛)-th bits of the original
problem. As we want to compute 𝑥1,𝑡 for every 𝑡 ∈ [𝑖 + 1,𝑚 +𝑛− 1],
the information of the first 𝑖 bits of the original problem is im-
portant. We use the first𝑚 bits of the original problem, which is
fully connected, and 𝑥𝑚+1,𝑖 to form the fully-connected part of
the right subproblem. We have to ensure that this part is fully
connected, which is the third property of problem 𝑃 described in
Section 3.2. The way we construct this fully-connected part for the
right subproblem is related to 𝑗 . We use 𝑥1, 𝑥2, ..., 𝑥 𝑗−1, 𝑥 𝑗,𝑚 and
𝑥𝑚+1,𝑖 as input nodes. We have shown in the last subsection that
these input nodes have decreasing input depths. Next, we verify
that these inputs are fully connected. There are in total 𝑗 + 1 input
nodes, and the first 𝑗 nodes are already fully connected because
they are from the fully-connected part of the original problem. It
remains to show that the last node 𝑥𝑚+1,𝑖 has connection with each
of the first 𝑗 nodes. This is exactly what the enumeration of 𝑗 does.
𝑥 𝑗,𝑖 = 𝑥 𝑗,𝑚 ◦ 𝑥𝑚+1,𝑖 is first computed, followed by 𝑥𝑘,𝑖 = 𝑥𝑘 ◦ 𝑥𝑘+1,𝑖
where 𝑘 runs from 𝑗 − 1 to 1. Precisely, the right subproblem is
𝐴𝑃1(𝑚 + 𝑛 − 𝑖, 𝑑 − 1, [𝑝0, ..., 𝑝 𝑗−1, 𝑑𝑒𝑝𝑡ℎ(𝑥 𝑗,𝑚), 𝑑 − 1]).

3.6 Time and Space Complexity
We analyze the algorithm with 𝐷 ≤ 2⌈log2 𝑁 ⌉, as optimal solutions
of 𝑃1(𝑁, 𝐷) for 𝐷 > 2⌈log2 𝑁 ⌉ can be obtained from [12].
Theorem 2. The time and space complexities of our algorithm for
𝑃1(𝑁, 𝐷) with 𝐷 ≤ 2⌈log2 𝑁 ⌉ are 𝑂 (𝑁 4 log2 𝑁 ) and 𝑂 (𝑁 3).

The proof is not provided due to page limit. The key of analysis
is to note that [𝑝0, ..., 𝑝𝑚] in 𝐴𝑃1(𝑛,𝑑, [𝑝0, ..., 𝑝𝑚]) only has𝑂 (2𝐷 )
(which equals 𝑂 (𝑁 2) when 𝐷 = 2⌈log2 𝑁 ⌉) combinations, given
that 𝑝0 > 𝑝1 > ... > 𝑝𝑚 >= 𝑑 (property 2 of 𝐴𝑃1). In practice, it
is common to require depth to be the minimum possible (i.e., 𝐷 =

⌈log2 𝑁 ⌉) for timing closure. The time and space complexities in
this scenario are reduced to 𝑂 (𝑁 3 log2 𝑁 ) and 𝑂 (𝑁 2) respectively.

3.7 Bitwise Input Depth Constraints
This subsection addresses Problem 2 defined in Section 2.2. Com-
pared to Problem 1, 𝑁 additional integers𝑄𝑖 representing the input
depths are given in Problem 2. Previously, we defined 𝐴𝑃1 to help
solve 𝑃1. Similarly, we define 𝐴𝑃2 as follows to help solve 𝑃2.

Problem 𝐴𝑃2(𝑙, 𝑟 , 𝑑, [𝑝0, ..., 𝑝𝑚]): Given a circuit 𝐺 with the
following properties, find the minimum number of nodes that need

to be added in order to compute 𝑥𝑚+1,𝑚+𝑟−𝑙+1 at depth 𝑑 and 𝑥1,𝑖
at depth 𝑝0 for every 𝑖 ∈ [𝑚 + 1,𝑚 + 𝑟 − 𝑙].

(1) 𝐺 has𝑚 + 𝑟 − 𝑙 + 1 inputs with 𝑑𝑒𝑝𝑡ℎ(𝑥𝑖 ) = 𝑝𝑖 for 𝑖 ∈ [1,𝑚]
and 𝑑𝑒𝑝𝑡ℎ(𝑥𝑖 ) = 𝑄𝑙+𝑖−𝑚−1 for 𝑖 ∈ [𝑚 + 1,𝑚 + 𝑟 − 𝑙 + 1].

(2) 𝑝0 > 𝑝1 > 𝑝2 > ... > 𝑝𝑚 ≥ 𝑑 .
(3) 𝐺 has node 𝑥𝑖, 𝑗 computed by 𝑥𝑖 ◦𝑥𝑖+1, 𝑗 for all 1 ≤ 𝑖 < 𝑗 ≤ 𝑚.
𝑃2(𝑁, 𝐷,𝑄) can be solved by computing𝐴𝑃2(1, 𝑁 , 𝐷, [𝐷]). Prob-

lem 𝐴𝑃2(𝑙, 𝑟 , 𝑑, [𝑝0, ..., 𝑝𝑚]) record by 𝑙 and 𝑟 the bit range of its
to-be-computed part in the original 𝑃2 (i.e., the to-be-computed
part corresponds to bits 𝑙 to 𝑟 of the original 𝑃2). Their input depths
can thus be obtained, which are 𝑄𝑙 to 𝑄𝑟 . Suppose we are solving
𝑃2(𝑁 = 12, 𝐷 = 9, 𝑄 = [3, 2, 1, 2, 0, 1, 1, 0, 0, 1, 1, 2]), for example,
and 𝐴𝑃2(𝑙 = 7, 𝑟 = 11, 3, [9, 7, 6, 4, 3]) is one of the many 𝐴𝑃2 in-
stances that need to be computed. In this example, 𝑙 = 7 and 𝑟 = 11
indicate that bits 5 to 9 (to-be-computed part) of 𝐴𝑃2 are bits 7 to
11 of the original Problem 2 we are solving. Therefore, the depths
of 𝑥5, 𝑥6, 𝑥7, 𝑥8, 𝑥9 are 𝑄7, 𝑄8, 𝑄9, 𝑄10, 𝑄11 = 1, 0, 0, 1, 1.

𝐴𝑃2(𝑙, 𝑟 , 𝑑, [𝑝0, ..., 𝑝𝑚]) can be computed using the same algo-
rithm as computing𝐴𝑃1, with consideration of the bit range 𝑙 and 𝑟 .
Precisely, the left and right subproblems of 𝐴𝑃2(𝑙, 𝑟 , 𝑑, [𝑝0, ..., 𝑝𝑚])
are 𝐴𝑃2(𝑙, 𝑖 −𝑚 + 𝑙 − 1, 𝑑 − 1, [𝑝0, ..., 𝑝𝑚]) and 𝐴𝑃2(𝑖 −𝑚 + 𝑙, 𝑟 , 𝑑 −
1, [𝑝0, ..., 𝑝 𝑗−1, 𝑑𝑒𝑝𝑡ℎ(𝑥 𝑗,𝑚), 𝑑]).

4 EXPERIMENTAL RESULTS
The experiments were conducted on a Linux machine with 32GB
memory and a 2.6GHz CPU. Our adders are functionally correct
verified by a commercial tool.

4.1 Size Comparisons of Parallel Prefix Circuits
Table 1 shows parallel prefix circuit size comparisons under differ-
ent bitwidth and depth requirements between our algorithm and
the previous state-of-the-art works [12] [6, 7]. The results of [12]
are taken from the paper, which is complete. Since [6] is a prelimi-
nary version of [7], we combine their results by taking the better
ones1 and show them in one line in Table 1. An “N/A” entry in
Table 1 indicates that the algorithm cannot generate a prefix circuit
under that constraint. Notably, our algorithm is able to generate the
minimum-size results for all cases, including many cases where the
previous works fail. The available results (i.e., non-“N/A” entries)
of [12] are claimed to be optimal, and our work does not show any
suboptimality experimentally in the comparison with it.

4.2 Non-Uniform Input Depths
It is difficult to make a comprehensive comparison for non-uniform
input depths because there are too many possible input depths.
We choose to show the prefix circuits generated by our method

1The results of [6] and [7] are obtained by running the provided source code and from
the paper, respectively.
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(a) Size=60, depth=7; prefix circuit by our method
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(b) Size=70, depth=7; prefix circuit by [6]

Figure 5: Comparison under non-uniform input depths be-
tween (a) our method and (b) the state-of-the-art method [6]

and [6] in Figure 5. The input depths are obtained randomly by
using “rand()%3” for bits 1-32 in order with random seed = 0 in
C++. The prefix circuit sizes of our method and [6] are 60 and 70
respectively. In addition to the numbers, we can also visually see
why our method is better in Figure 5 by focusing on bits 23-24,
which arrive very early at depth 0. Our method takes advantage of
this and lets them immediately do some computations at depth 1,
while the work [6] does not take advantage of this point, and lets
them wait until depths 3 and 4 for the first computation. This shows
that our algorithm has a better awareness of the input depths.

4.3 Adder Comparison
To demonstrate the usefulness of our method in practice, we further
compare the adders generated by our method to those generated
by a commercial synthesis tool (CST). We implement our adder ar-
chitectures in a standard way using alternating OAI/AOI gates [10],
and use CST for one iteration of size-only (structure-preserving)
synthesis followed by two iterations of incremental synthesis. The
reference CST adders are obtained by synthesizing 𝑦 = 𝑎 + 𝑏 in
the same flow. The NanGate 15nm Open Cell Library[4] (typical,
NLDM) is used for synthesis and the target delay is set to 0.

Table 2 shows the delay, area and power results of our adders and
CST adders. For each bitwidth, we explore 100 adders generated
by our method and show the results of the best-delay adders in
Table 2. Our method can effectively reduce the average delay, area
and power of 64/128/256/512/1024-bit adders by 2.8%, 8.3% and
10.3% respectively. We further show the area-delay results of all
100 adders generated by our method in Figure 6. It clearly shows
that our method has consistently and significantly better area than
CST, and has better delay in most cases.

5 CONCLUSIONS
This paper presents a novel divide-and-conquer-friendly problem
formulation for designing parallel prefix circuits, followed by an effi-
cient dynamic programming approach to the problem. The method

Table 2: PPA Comparison of Our Method and CST

Bitwidth Delay (𝑝𝑠) Area (𝜇𝑚2) Power (𝑚𝑊 )
CST Ours Imp CST Ours Imp CST Ours Imp

64 41.4 40.6 1.8% 197.1 190.9 3.1% 129.1 122.3 5.3%
128 50.5 48.7 3.6% 412.9 386.3 6.4% 265.9 235.5 11.4%
256 56.7 55.0 3.0% 851.8 795.7 6.6% 536.7 494.3 7.9%
512 64.7 63.1 2.5% 1799.3 1575.4 12.4% 1098.7 939.0 14.5%
1024 72.7 70.4 3.2% 3665.4 3194.4 12.9% 2191.8 1918.6 12.5%

Average 2.8% 8.3% 10.3%
Imp: improvement computed by (𝐶𝑆𝑇 −𝑂𝑢𝑟𝑠)/𝐶𝑆𝑇
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Figure 6: Area-delay of adders by CST and this work

is fast (polynomial run time), flexible (able to consider non-uniform
input depths), and of high quality (outperforming state-of-the-art
academic and commercial tools). Notably, this work can generate
high-performance large-scale (thousands of bits) adders, which are
rarely studied in the literature but have important applications like
RSA chips in cryptography.
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