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ABSTRACT
Composite Current Source (CCS) timing model plays an important
role in modern static timing analysis (STA) because it precisely cap-
tures the timing behavior of a design at advanced nodes. However,
CCS is extremely time-consuming due to its accurate but compli-
cated timing models. To overcome this challenge, we introduce
GCS-Timer, a GPU-accelerated CCS-based timing analysis algo-
rithm. Unlike existing methods that perform model order reduction
to trade accuracy for speed, GCS-Timer achieves high accuracy
through a fast simulation-based analysis using GPU computing.
Experimental results show that GCS-Timer can complete CCS anal-
ysis with better accuracy and achieve 3.2× faster runtime compared
with a 16-threaded industrial standard timer. The source code is
available at https://github.com/cuhk-eda/GCS-Timer.

1 INTRODUCTION
Static timing analysis (STA) plays an essential role in the overall
design flow because it verifies the expected timing behaviors of a
circuit design using dual-mode (min/max) delay analysis. Among
various delay models, non-linear delay model (NLDM) is one of
most commonly used timing models due to its simple driver and
receiver models. On the driver side, NLDM characterizes input-to-
output delay and output slew as an efficient look-up table (LUT) of
input transition time and output load capacitance. On the receiver
side, NLDM assumes a single capacitor for the entire transition.
As a result, NLDM is extremely efficient in delay calculation and
has been widely adopted by existing timers, such as OpenSTA [4],
OpenTimer [10, 13], and commercial tools.

Despite the efficiency, NLDM is not sufficient for reflecting the
non-linearities of circuits at advanced technology nodes (45nm
and beyond). Specifically, NLDM receiver model fails to capture
Miller effect, which dominates the accuracy of delay calculation
for small-impedance nets. To overcome this problem, Composite
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Figure 1: Runtime scalability of CCS-based STA.

Current Source (CCS) model characterizes the driver behavior as
a time-varying and voltage-dependent current source, which pro-
vides accurate response for arbitrary RC networks. CCS also uses
two capacitance values for the receiver model to account for the
Miller effect. As a consequence, CCS is more accurate at deep sub-
micron yet at the cost of longer runtime because of the complicated
computation of the driver and receiver models.

To alleviate the long CCS runtime, multi-threading is a com-
mon solution. As shown in Figure 1 (reported by an industrial
standard timer), a multi-threaded CCS algorithm can reduce the
runtime from 120s to 40s when analyzing a 200K-gate design. How-
ever, the speedup quickly saturates at 8–16 threads primarily be-
cause of the overheads and the limited memory bandwidth of CPU
threads [11, 12]. Compared with many-core CPUs, modern GPU
supports orders of magnitude more parallelism and much higher
memory bandwidth. Because of this advantage, we have seen vari-
ous GPU-accelerated STA algorithms in recent electronic design
automation research [7–9, 14–16]. These results have inspired us
to leverage GPU to accelerate CCS analysis.

However, designing a GPU-accelerated CCS algorithm is ex-
tremely challenging for three reasons. First, high-accuracy CCS
analysis relies on simulation-based methods, which analyze a driver
and its receivers together in the RC network. This is very different
from NLDM which separates the delay calculation of drivers and
RC networks. We need to design a different framework for efficient
CCS analysis. Second, CCS delay calculation is very complicated
because we need to use the driver model to compute accurate driver
response for every simulation iteration, similarly for calculating
the capacitance of a receiver. We need to design new efficient GPU
kernels that can handle the frequent driver response computation
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and the receiver capacitance change during simulation. Third, CCS-
based STA analyzes an RC network in many stages for different
driver timing arcs and transitions. These analyses share the same
RC network and differ only in the driver and receivers, resulting in
similar conductance matrices for simulation. Since matrix inverse
computation is time-consuming but necessary for simulation, we
need new techniques to efficiently compute the inverses of a batch
of similar matrices.

To overcome these challenges, we propose GCS-Timer, a GPU-
accelerated CCS-based STA algorithm. As shown in Figure 1, our
goal is to break the bottleneck of multi-threaded CCS analysis
by harnessing power of massively-parallel GPU computing. We
summarize three technical contributions below:
• We design a GPU acceleration framework for CCS-based STA.
The framework uses a two-pass simulation scheme for high ac-
curacy and fully explores different parallelisms from the two
simulation passes.
• We develop an efficient GPU kernel for CCS delay calculation.
The kernel has an accurate and lightweight driver current com-
putation engine and an iterative approximation method to break
the inter-dependency between the driver response and the circuit
while ensuring high accuracy.
• We propose a new precomputation technique for efficient ma-
trix inverse calculation, which is the core of simulation. This
technique can identify a group of stages that have similar con-
ductance matrices, and precompute some partial inverse results.
The precomputation is efficient, and can significantly reduce the
runtime of matrix inverse computation for CCS analysis.
We evaluate the performance of GCS-Timer on a set of open-

source circuit benchmarks. Compared with a 16-threaded industrial
standard timer, GCS-Timer achieves 3.2× faster runtime and higher
accuracy.
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Figure 2: A stage consists of a driver cell arc connected to the
receivers by an RC network, which becomes a circuit with
current sources, resistors, and capacitors after applying the
CCS model.

2 CCS-BASED STAITC TIMING ANALYSIS
Static timing analysis (STA) examines the timing of a design by
checking all timing paths. It typically has two procedures, delay
calculation and delay propagation, which calculate the delay of each
cell/net arc and propagate the delay along each path, respectively.

2.1 Composite Current Source (CCS) Model
The CCS timing model consists of a driver model and a receiver
model. The driver model describes how a timing arc propagates
a transition from input to output, and how it drives an arbitrary
RC network. The receiver model describes the capacitance that an
input pin presents to the driver cell.
CCS Driver Model. The CCS driver model is a time- and voltage-
dependent current source. It achieves high accuracy by mapping
arbitrary transistor behavior for lumped loads to the behavior for a
detailed parasitic network. The model is given by a 2D table indexed
by input transition time (slew) and output load capacitance. Each
table entry describes the driver output current as a piecewise linear
function of time, 𝑖 = 𝑖 (𝑡).
CCS Receiver Model. CCS models a receiver as a capacitor with
varying capacitance depending on input slew and output capaci-
tance. CCS provides two tables for capacitance calculation to ac-
count for the Miller effect, which are used before and after the
receiver input pin reaching the delay threshold respectively.

CCS delay calculation is typically performed on a stage consist-
ing of a driver cell arc connected to some receiver cells by an RC
network. An RC network is a circuit consisting of capacitors to
ground and resistors. Figure 2 shows an example stage consisting
of two receiver cells and an RC network with 4 capacitors and 3
resistors. This stage becomes a circuit of current sources, resistors
and capacitors after applying the CCS model (replacing the driver
and receivers by the respective CCS models), as shown in Figure 2.

Given a transition time of the driver input pin, the goal of stage
delay calculation is to calculate the response (waveform) at the
driver output and receiver input pins. For example, the task in
Figure 2 is to compute the waveforms at𝑑𝑟𝑣𝑜𝑢𝑡 , 𝑟𝑒𝑐0 and 𝑟𝑒𝑐1. Delay
and slew can be calculated by definition using these waveforms. For
example, the delay between 𝑑𝑟𝑣𝑜𝑢𝑡 and 𝑟𝑒𝑐0 is the time difference
when they reach a voltage threshold (usually 0.5𝑉𝑑𝑑 ).
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Figure 3: Simulation of circuits with capacitors, current
sources and resistors. (a) Transform each capacitor into a
current source and a resistor in parallel. (b) Perform nodal
analysis to compute the voltage at each node.

2.2 Circuit Simulation
GCS-Timer uses circuit simulation, a slow but accurate method, for
stage delay calculation. We leverage a standard approach [17] to
simulate a circuit with current sources, resistors, and capacitors.

Simulation starts with an initial state at 𝑡 (0) and iteratively com-
putes the circuit states at timesteps 𝑡 (1) , 𝑡 (2) , ..., 𝑡 (𝑛) . Between con-
secutive timesteps, We assume a linear current change to simplify
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the circuit and solve for the circuit state. For a capacitor 𝐶 , the
current flowing through it is 𝑖 = 𝐶 𝑑𝑣

𝑑𝑡
. By computing the integra-

tion in (𝑡, 𝑡 + Δ𝑡), we have 𝑖 (𝑡 + Δ𝑡) = 2𝐶
Δ𝑡 (𝑣 (𝑡 + Δ𝑡) − 𝑣 (𝑡)) − 𝑖 (𝑡),

which allows us to transform a capacitor at 𝑡 + Δ𝑡 into a resistor
and a current source in parallel, as shown in Figure 3 (a). After
transforming capacitors, the circuit contains only resistors and cur-
rent sources. An example of such a circuit is shown in Figure 3 (b),
where the currents 𝑖0 and 𝑖1 flowing through 𝑅0 and 𝑅1 can be
represented by Ohm’s law (𝑉 = 𝐼𝑅). We perform nodal analysis
to calculate the voltage at each node of the circuit. Specifically, at
nodes 𝑣1 and 𝑣2 we apply Kirchhoff’s current law, which states that
the algebraic sum of the currents entering and exiting a node is zero.
These equations can be organized as a system of linear equations
and represented in the matrix/vector form𝐺𝑉 = 𝐼𝑠𝑟𝑐 . The voltage
vector 𝑉 can be calculated as 𝐺−1𝐼𝑠𝑟𝑐 .

2.3 Related Work
The 2020 and 2021 TAU contests [1, 2] introduce two simplified
versions of CCS stage delay calculation. The 2020 contest [1] uses
a reduced model of RC networks, 𝜋 model, consisting of a resistor
and two capacitors. For this problem, Garyfallou et al. [5] develop
a closed-form formula for the effective capacitance of a 𝜋-model
load, which is used to compute the effective capacitance values
for different waveform regions. It is efficient because of the closed-
form formula but is only applicable to the simplified 𝜋-model load.
On the other hand, the 2021 contest [2] provides complete RC
networks instead of 𝜋 models for delay calculation. Garyfallou et
al. [6] propose a machine learning approach to learn the correlation
between the initial computed results and the golden SPICE results
for accurate delay prediction.

Existing CCS algorithms in the literature are rarely based on
simulation, primarily due to the slow runtime. Also, previous re-
search mostly focuses on CCS driver or stage delay calculation
instead of graph-level analysis, because it is straightforward to
obtain the graph-level results by propagating the stage delay re-
sults. By contrast, GCS-Timer uses simulation-based analysis for
high accuracy and overcomes its long runtime by GPU acceleration.
GCS-Timer also performs graph-based analysis, which opens up
more opportunities for parallelization.

3 GCS-TIMER
In this section, we discuss the details of GCS-Timer. Section 3.1
starts with the overview of GCS-Timer. Next, we introduce our
driver output current computation engine in Section 3.2, followed
by our GPU-accelerated simulation kernel in Section 3.3. Lastly, in
Section 3.4, we propose a precomputation technique to accelerate
matrix inverse computation.

3.1 Overview
Algorithm 1 shows the overall flow of GCS-Timer, which has four
phases. The first phase (line 1) precomputes the partial inverse
results of the simulation matrices, which can speed up the inverse
computation in phases 2-3 and will be discussed in Section 3.4. The
second and third phases are both simulations (pass 1 and pass 2),
and have the following two differences.

Algorithm 1 Flow of GCS-Timer
1: Partial matrix inverse precomputation ⊲ End of precomputation
2: Compute complete matrix inverses (NLDM receiver model)
3: for 𝑖 ← 0 to max_level do
4: Simulate all stages of level 𝑖 in parallel
5: end for ⊲ End of pass 1
6: Compute complete matrix inverses (CCS receiver model)
7: Simulate all stages in parallel ⊲ End of pass 2
8: for 𝑖 ← 0 to max_level do
9: Propagate delay of all cell pins of level 𝑖
10: end for ⊲ End of delay propagation

• The receiver models used for pass 1 and pass 2 are the NLDM
and CCS receiver models, respectively. We do not use the CCS
receiver model in pass 1 because the receiver input pin slew
is not available before pass 1, but is necessary to compute the
CCS receiver model. To solve this problem, we use the NLDM
receiver model for pass 1, whichmodels the receiver as a constant-
capacitance capacitor. With the input slew calculated in pass 1,
we use the CCS receiver model in pass 2 for accurate analysis.
• Pass 1 and pass 2 have different parallelisms in stage delay cal-
culation, as indicated in Algorithm 1. Pass 1 simulates all stages
in the same level in parallel, while pass 2 simulates all stages in
parallel. This is due to the availability of the stage driver input
slew, which is required for simulation. For the driver of a stage,
its input slew was computed when it acted as a receiver of some
stages in a previous circuit level. Therefore, pass 1 needs to finish
simulating one level of stages before moving on to the next level
to obtain all the driver input slews for the next level. For pass 2, it
uses the input slew results calculated in pass 1 and can therefore
simulate all stages in parallel.

The last phase of the GCS-Timer flow is parallel delay propa-
gation (lines 8-10 of Algorithm 1), where we propagate the delay
level by level. We compute the cumulative delay of all pins in the
same level simultaneously. We will not go into the details of delay
propagation as it is a standard process (see [13] for details).

Algorithm 2 Driver Output Current Computation
1: CCS Driver Model:
2: a list of input transition time values, 𝑖𝑛𝑝𝑢𝑡_𝑠𝑙𝑒𝑤𝑠

3: a list of output load capacitance values, 𝑜𝑢𝑡𝑝𝑢𝑡_𝑐𝑎𝑝𝑠
4: a piecewise linear function 𝑖 (𝑡 ) for every (𝑠𝑙𝑒𝑤, 𝑐𝑎𝑝 ) pair,

where 𝑠𝑙𝑒𝑤 ∈ 𝑖𝑛𝑝𝑢𝑡_𝑠𝑙𝑒𝑤𝑠, 𝑐𝑎𝑝 ∈ 𝑜𝑢𝑡𝑝𝑢𝑡_𝑐𝑎𝑝𝑠
5: function 𝑓𝑖𝑜𝑢𝑡 (𝑣𝑜𝑢𝑡 , 𝑡0)
6: Interpolate with the driver input slew
7: Compute 𝑣 (𝑡 ) from 𝑖 (𝑡 ) for each 𝑐𝑎𝑝 ∈ 𝑜𝑢𝑡𝑝𝑢𝑡_𝑐𝑎𝑝𝑠

// The driver model at this point can be represented by 𝑔 (𝑐, 𝑣, 𝑡 ) = 0.
// Given the values of any two variables, 𝑔 can compute the third one.

8: Compute 𝑐0 from 𝑔 (𝑐0, 𝑣𝑜𝑢𝑡 , 𝑡0 ) = 0
9: Compute 𝑡− from 𝑔 (𝑐0, 𝑣𝑜𝑢𝑡 − Δ𝑣, 𝑡− ) = 0
10: Compute 𝑡+ from 𝑔 (𝑐0, 𝑣𝑜𝑢𝑡 + Δ𝑣, 𝑡+ ) = 0
11: return 𝑖𝑜𝑢𝑡 = 𝑐0 × 2Δ𝑣/(𝑡+ − 𝑡− )
12: end function
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3.2 Driver Output Current Computation
Driver output current (𝑖𝑜𝑢𝑡 ) computation is important for ensuring
accurate driver response during simulation. Algorithm 2 shows
our algorithm 𝑓𝑖𝑜𝑢𝑡 , which computes 𝑖𝑜𝑢𝑡 using the driver output
voltage 𝑣𝑜𝑢𝑡 , time 𝑡0, and the CCS driver model. The driver model
provides a list of input slew and output capacitance values, and an
𝑖 (𝑡) function for each input slew/output capacitance pair.

𝑓𝑖𝑜𝑢𝑡 starts with interpolating using the input slew of the driver
input pin. Next, we compute a voltage function, 𝑣 (𝑡), from 𝑖 (𝑡) for
each output capacitance value. After these two steps, the driver
model can be represented by an implicit function 𝑔(𝑐, 𝑣, 𝑡) = 0,
which, given the values of any two variables (out of capacitance
𝑐 , voltage 𝑣 and time 𝑡 ), returns the value of the third variable.
With this model, we compute 𝑖𝑜𝑢𝑡 in lines 8-11 of Algorithm 2,
according 𝑖 = 𝐶 (𝑣+ − 𝑣−)/(𝑡+ − 𝑡−), where 𝑣± = 𝑣𝑜𝑢𝑡 ± Δ𝑣 with
their corresponding times 𝑡±. The formula is an approximation of
𝑖 = 𝐶 𝑑𝑣

𝑑𝑡
. In our implementation, Δ𝑣 = 0.01𝑉𝑑𝑑 .

Algorithm 3 GPU-Accelerated Simulation Kernel
Input: a stage with input slew; Output: slews (pass 1) or delays (pass 2)
//𝑛: number of circuit nodes;𝑉 (𝑖 ) : voltage vector at iteration 𝑖

1: while not all receiver input pin voltages reach𝑉𝑑𝑑 do
2: 𝑡 (𝑖 ) ← 𝑡 (𝑖−1) + Δ𝑡 ⊲ Iteration 𝑖

3: for 𝑗 ← 1 to 𝑛 in parallel do
4: Compute 𝐼𝑠𝑟𝑐 𝑗
5: end for


Compute 𝐼𝑠𝑟𝑐 in parallel

6: 𝑖𝑜𝑢𝑡 ← 𝑓𝑖𝑜𝑢𝑡 (𝑣𝑜𝑢𝑡 , 𝑡 (𝑖 ) )
7: 𝐼𝑠𝑟𝑐1 ← 𝐼𝑠𝑟𝑐1 + 𝑖𝑜𝑢𝑡
8: for 𝑗 ← 1 to 𝑛 in parallel do
9: for 𝑘 ← 1 to 𝑛 do
10: 𝑉

(𝑖 )
𝑗
+ = 𝐺−1

𝑗,𝑘
𝐼𝑠𝑟𝑐𝑘


Compute𝑉 (𝑖 ) in parallel

11: end for
12: end for
13: end while
14: Compute receiver input pin slews (pass 1) or cell and net delays (pass 2)

3.3 GPU-Accelerated Simulation
Simulation is the core of GCS-Timer, which computes the voltage at
each node for a sequence of timesteps 𝑡 (0) , 𝑡 (1) , ..., 𝑡 (𝑒𝑛𝑑 ) . Details
of our GPU-accelerated simulation are given in Algorithm 3. The
simulation loop starts with an initial state of 𝑉 (0) = 0 at 𝑡 (0) , and
iteratively computes the new 𝑉 (𝑖 ) at time 𝑡 (𝑖 ) until all voltages
of the receiver input pins reach 𝑉𝑑𝑑 . Each simulation iteration
computes 𝐼𝑠𝑟𝑐 followed by𝑉 (𝑖 ) = 𝐺−1𝐼𝑠𝑟𝑐 , as shown in Algorithm 3.

𝐼𝑠𝑟𝑐 is the current source vector and 𝐼𝑠𝑟𝑐 𝑗 is the total current
entering node 𝑗 from current sources, including both capacitor-
transformed and driver-model current sources. In each simulation
iteration, we compute the driver-model current using our 𝑖𝑜𝑢𝑡 -
computation engine 𝑓𝑖𝑜𝑢𝑡 (𝑣𝑜𝑢𝑡 , 𝑡) in Algorithm 2 (the computation
of 𝑣𝑜𝑢𝑡 will be discussed later). For the capacitor-transformed cur-
rent sources, we use 𝑛 threads to compute their current values in
parallel because the computations are independent.

Next, after obtaining 𝐼𝑠𝑟𝑐 , we compute𝑉 (𝑖 ) by𝐺−1𝐼𝑠𝑟𝑐 , which is
a matrix-vector multiplication. Again, we use 𝑛 threads to compute
𝑉 (𝑖 ) in parallel with each thread adding 𝑛 multiplication results.

It is possible to further parallelize the loop in lines 9-11 that adds
𝑛 numbers, for example, by parallel reduction. However, we do
not do this for two reasons. First, we think that 𝑛2 threads for a
single simulation is not resource efficient, considering that many
simulations run in parallel. It might be better to use those𝑛2 threads
to run 𝑛 simulations in parallel. Second, parallel reduction can only
reduce the runtime from 𝑂 (𝑛) to 𝑂 (log𝑛) with some overhead,
which is not that significant in our case where 𝑛 is small on average.

Lastly, we go back to discuss how to compute 𝑣𝑜𝑢𝑡 , which is
needed to compute 𝑖𝑜𝑢𝑡 . Assuming that the driver output point is
node 1, 𝑣𝑜𝑢𝑡 is𝑉

(𝑖 )
1 , which is to be computed after computing 𝐼𝑠𝑟𝑐 . In

other words, the computations of 𝐼𝑠𝑟𝑐 and𝑉 (𝑖 ) are inter-dependent.
To break the dependency, we choose 𝑉 (𝑖−1)1 as an initial approxi-
mation for 𝑣𝑜𝑢𝑡 , and use an iterative approach in Algorithm 4 to
ensure accuracy.

Algorithm 4 An Iterative Approach to Compute Accurate 𝑣𝑜𝑢𝑡
1: for 𝑖𝑡𝑒𝑟 ← 0 to𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 do
2: 𝑣𝑜𝑢𝑡 ← 𝑖𝑡𝑒𝑟 > 0 ?𝑉 (𝑖 )1 : 𝑉 (𝑖−1)1
3: Compute 𝐼𝑠𝑟𝑐 , Compute𝑉 (𝑖 ) ⊲ Algorithm 3
4: end for

We first set 𝑣𝑜𝑢𝑡 ← 𝑉
(𝑖−1)
1 and finish the simulation iteration

to get 𝑉 (𝑖 ) , which corresponds to 𝑖𝑡𝑒𝑟 = 0 in Algorithm 4. Next,
we repeat the 𝑖th simulation iteration for 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 times with
𝑣𝑜𝑢𝑡 ← 𝑉

(𝑖 )
1 . Approximating 𝑣𝑜𝑢𝑡 by 𝑉

(𝑖−1)
1 for 𝑖𝑡𝑒𝑟 = 0 is simple

and reasonable because the voltage change in Δ𝑡 is usually small,
and the iterative approach also helps 𝑣𝑜𝑢𝑡 to converge to the true
𝑣𝑜𝑢𝑡 , which improves the simulation accuracy.

We can further improve the efficiency of Algorithm 4 by com-
puting only 𝑉 (𝑖 )1 instead of 𝑉 (𝑖 ) for 𝑖𝑡𝑒𝑟 < 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 , because all
the iterations with 𝑖𝑡𝑒𝑟 < 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 are used only to obtain a more
accurate 𝑣𝑜𝑢𝑡 , and only the𝑉 (𝑖 ) computed in the last iteration with
𝑖𝑡𝑒𝑟 =𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 is useful. In our implementation,𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 = 1.

3.4 Partial Matrix Inverse Precomputation
Akey step in the simulation is to compute the voltage vector𝑉 using
𝐺−1. We observe that the matrix inverses of interest are an order
of magnitude more than the number of nets, resulting in extremely
long runtime even with GPU acceleration. To improve the efficiency
of the inverse computation, we propose a novel precomputation
technique based on the observation that many matrices differ only
in a small square region.

For example, in Figure 4, we have an RC network with 𝑛 nodes,
and𝑚 of them are connected to the receivers. This network appears
in 4 stages, each of which has three different receiver capacitance
computing scheme in the 2-pass simulation process. In total, there
are 12 circuits containing this RC network, differing only in the
receiver capacitance values.

To see this difference in the conductance matrix format, we need
to first number the nodes of the RC network. If we number them
starting from the receivers (i.e., the receiver input points are num-
bered from 1 to 𝑚), the conductance matrices differ only in the
upper left𝑚 ×𝑚 region. This property allows us to precompute
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Figure 4: A partial precomputation scheme for faster matrix inverse computation. Each RC network is associated with several
conductance matrices 𝐺 , which are identical except for the upper-left𝑚 ×𝑚 square 𝐴. We use the identical parts 𝐵, 𝐶 and 𝐷 to
precompute 𝐷−1, 𝑃𝐵 , 𝑃𝐶 and 𝑃𝐷 , enabling faster inverse computation when presented with different 𝐴, according to the block
matrix inversion formula.

some results of the unchanged part according to the block matrix in-
version rules [3], which supports faster matrix inverse computation
every time when the unknown upper-left part is given.

Specifically, for an RC network with 𝑛 nodes and𝑚 receivers, if
we decompose its conductance matrix𝐺 into

[
𝐴 𝐵
𝐶 𝐷

]
, where 𝐴 is an

𝑚 ×𝑚 sub-matrix, its inverse can be computed by[
(𝐴 − 𝐵𝐷−1𝐶)−1 −(𝐴 − 𝐵𝐷−1𝐶)−1𝐵𝐷−1

−𝐷−1𝐶 (𝐴 − 𝐵𝐷−1𝐶)−1 𝐷−1 + 𝐷−1𝐶 (𝐴 − 𝐵𝐷−1𝐶)−1𝐵𝐷−1
]

according to [3]. 𝐴 is initially unknown while 𝐵, 𝐶 and 𝐷 are avail-
able from the start. To minimize the inverse computation time, we
identify the precomputable partial results of the inverse as much
as possible and precompute them, which are 𝐷−1, 𝑃𝐵 = 𝐵𝐷−1,
𝑃𝐶 = 𝐷−1𝐶 and 𝑃𝐷 = 𝐵𝐷−1𝐶 . With the precomputation results,
we can compute 𝐺−1 for a given 𝐴 by computing 𝑋 = (𝐴 − 𝑃𝐷 )−1
followed by

𝐺−1 =
[

𝑋 −𝑋𝑃𝐵
−𝑃𝐶𝑋 𝐷−1 + 𝑃𝐶𝑋𝑃𝐵

]
, which reduces the runtime of inverse computation from 𝑂 (𝑛3)
to 𝑂 (𝑛2𝑚). The precomputation time is also small, because the
number of precomputation is much smaller than the number of
inverse computation. For example, in Figure 4, we precompute only
once for an RC network that has 12 matrix inverse computations
during CCS delay calculation. In our experiments, the number of
inverse computation is 20× more than that of the precomputation.

4 EXPERIMENTAL RESULTS
We compare GCS-Timer with an industrial standard timer (“Base-
line”) that has been successful in sign-off analysis. To the best of
our knowledge, there are no existing open-source STA projects in
support of CCS. Our experiments run on a machine with 1.90GHz
CPUs and a GPU (10496 cores, 556.0 GFLOPS for FP64). GCS-Timer
runs on the Ubuntu machine using only one CPU thread. Baseline
runs on the CentOS machine due to commercial installation require-
ment, and is configured with 16 threads at which its performance
saturates. Although GCS-Timer and Baseline run on different GPUs,
the impact on performance is minimal because GCS-Timer mostly

runs on the GPU where only one CPU thread is used for handling
lightweight control-flow code.

In terms of circuit benchmarks, we synthesize the four largest
arithmetic circuits from the EPFL benchmark suite under the 7nm
open-source technology library ASAP7. Table 1 shows the statistics
of the four circuits. The largest circuit, Hypotenuse, has 200K gates
and 200K nets. The RC network size, in terms of the number of
capacitors, ranges from 3 to 468.

4.1 Accuracy Comparison
We first evaluate the accuracy of stage delay calculation. We ask
Baseline to write a SPICE deck for each stage, and use a commer-
cial SPICE tool to generate the golden results of all stages. The
accuracy results are shown in the “Stage Delay Error” column of
Table 1, which is the average relative error of all cell/net arc de-
lays compared to the golden results. Note that if the absolute error
of an arc is less than 0.5𝑝𝑠 , we regard it as 0. This is because the
delay of a small net can be very small (e.g., as small as 0.006𝑝𝑠
in the circuit Multiplier), and therefore even an insignificant
difference of 0.01𝑝𝑠 would contribute a huge relative error (e.g.,
0.01/0.006 = 167%). The 2020 and 2021 TAU contests [1, 2] have
a similar way of evaluation, but they consider an absolute error
of up to 2𝑝𝑠 as 0. In fact, without this 0.5𝑝𝑠 cutoff, the relative
errors of GCS-Timer and Baseline would be 5.94% and 19.14% for
circuit Hypotenuse, respectively. This result shows that even when
the computed delay is extremely small, GCS-Timer can still achieve
a superior accuracy performance over the Baseline. Additionally,
we can see from Table 1 that GCS-Timer has an average stage delay
error of 1.8%, which is only 2/3 the error of Baseline.

Next, we evaluate the overall accuracy of the delay propagation
results of GCS-Timer. Unlike the SPICE-based evaluation method
of stage delay calculation accuracy, we cannot use SPICE for evalu-
ating the delay propagation accuracy because SPICE is not capable
of performing graph-based analysis. We resort to evaluating the
delay propagation accuracy by comparing the difference in arrival
time values at output ports between GCS-Timer and Baseline, and
show the results in the column “AT Diff” of Table 1. The average
difference of the four benchmarks is 1.3%. Since GCS-Timer and
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Table 1: Speed and Accuracy Comparisons of GCS-Timer and Baseline

Design #PIs #POs #Gates #Nets
RC Network Size Runtime (s) Stage Delay Error†

AT Diff‡Min Avg Max Baseline Baseline GCS- Speedup* Baseline GCS-
1 Thread 16 Threads Timer Timer

Multiplier 128 128 26654 26782 3 12 327 20.1 4.0 1.5 13.4×/2.7× 2.1% 2.0% 2.3%
Log2 32 32 31361 31393 3 13 433 22.1 4.8 1.5 14.7×/3.2× 3.0% 1.7% 1.7%

Divisor 128 128 100955 101083 3 11 426 55.7 10.3 3.0 18.6×/3.4× 3.5% 1.9% 1.0%
Hypotenuse 256 256 205295 205551 3 11 468 131.1 32.2 9.7 13.5×/3.3× 2.3% 1.7% 0.3%

Average 15.1×/3.2× 2.7% 1.8% 1.3%
†Average cell/net delay error compared to a commercial SPICE tool *Speedup of GCS-Timer over 1/16-threaded Baseline
‡Average difference of arrival times at output ports between GCS-Timer and Baseline

Baseline already have slightly different stage delay calculation re-
sults, it is reasonable to see a small difference in the arrival time
values at the output ports between Baseline and GCS-Timer.

4.2 Speed Comparison
The “Runtime” in Table 1 compares the STA runtime between Base-
line and GCS-Timer. We run Baseline twice with 1 and 16 threads
(at which its performance saturates), and we run GCS-Timer with 1
GPU and 1 CPU thread. We show the speedups of GCS-Timer over
the single-threaded and 16-threaded Baseline in the “Speedup” col-
umn of Table 1. On average, GCS-Timer is 15.1× and 3.2× faster than
single-threaded and 16-threaded Baseline respectively, which is a
significant improvement considering that GCS-Timer also achieves
better accuracy. The largest speedup happens at the circuit Divisor,
where GCS-Timer is 18.6× and 3.4× faster than the single-threaded
and 16-threaded Baseline respectively.

4.3 Tradeoff Between Accuracy and Speed
The better accuracy and faster runtime results achieved by GCS-
Timer give STA applications more opportunities to explore different
tradeoffs between accuracy and speed. For example, we can reduce
the RC network size by performing model order reduction of RC
networks [18]. This decreases the complexity of RC networks, lead-
ing to faster speed yet at the cost of lower accuracy. On the other
hand, we can increase simulation iterations to achieve higher accu-
racy yet at the cost of longer runtime. By using these two tradeoff
techniques, GCS-Timer can offer various accuracy-speed tradeoffs.
Figure 5 shows the tradeoffs on circuit Hypotenuse. As we can
observe, regardless of the tradeoffs we have applied, the runtime
and accuracy results are still better than the 16-threaded Baseline.

5 CONCLUSIONS
In this paper, we have introduced GCS-Timer, a GPU-accelerated
STA algorithm with a specific focus on the CCS model. To achieve
efficient and accurate CCS-based timing analysis, we design a fast
and accurate GPU acceleration framework. Under this framework,
we further develop an efficient CCS delay calculation engine on
GPU. We also propose a precomputation technique for fast matrix
inverse calculation. Compared with a 16-threaded industrial stan-
dard timer, GCS-Timer achieves an average of 3.2× faster analysis
runtime with better accuracy results on a set of real circuit designs.
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