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ABSTRACT
Global routing plays a crucial role in electronic design automa-

tion (EDA), serving not only as a means of optimizing routing

but also as a tool for estimating routability in earlier stages such

as logic synthesis and physical planning. However, these scenar-

ios often require global routing on unpartitioned large designs,

posing unique challenges in scalability, both in terms of runtime

and design size. To tackle this issue, this paper introduces useful

techniques for parallelizing large-scale global routing that can sig-

nificantly increase parallelism and thus reduce runtime. Building

upon these techniques, we have developed an open-source GPU-

based global router that achieves the state-of-the-art results in the

latest ISPD’24 Contest benchmarks, thereby showcasing the effec-

tiveness of our methods. The source code of this work is available

at https://github.com/cuhk-eda/InstantGR.

1 INTRODUCTION
Routing is a critical yet complex phase in the implementation pro-

cess of integrated circuits (ICs), often necessitating considerable

time and effort. Given its complexity, the routing process is typi-

cally divided into two stages: global routing and detailed routing.

Global routing, the initial stage, establishes coarse-grained wire

paths for signal nets, thereby providing valuable guidance for the

subsequent detailed routing stage, enhancing its efficiency. Detailed

routing, on the other hand, focuses on identifying valid physical

paths, primarily within the routing guides set by global routing,

while taking into account design rule constraints.

In addition to guiding detailed routing, global routing also plays

an important role in earlier stages of the IC implementation flow,

such as logic synthesis and physical planning, where it facilitates

routability and timing estimation [15]. This estimation assists in

generating physical-friendly netlists during logic synthesis and

aids in partitioning, I/O planning, and timing budgeting during

physical planning [15]. Given the purpose of estimation, global
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routers for early stages have the following three characteristics [15].

First, they must be capable of handling extremely large designs (up

to 100M cells) that have not yet been partitioned. Second, as a

frequently used engine for routability and timing estimation, the

global routers need to be highly efficient. The intensive use can

result in significant runtime overhead if the routers are not fast

enough. Lastly, global routers do not need to resolve congestion

with high effort, because low-effort global routing results serve

sufficiently for estimation purposes. These characteristics present

significant scalability challenges in both design size and runtime

for existing global routers.

GPU computing has emerged as a promising solution to the

runtime scalability issue due to its support of higher parallelism

and memory bandwidth. Many GPU-accelerated algorithms have

demonstrated significantly improved efficiency in various EDA

problems [4–13, 16–21, 24–30]. Among these works, there are three

related to global routing. GAMER [19] reformulates maze rout-

ing as a prefix sum/min problem that can be efficiently solved

with GPU, achieving significant speedup when integrated into the

state-of-the-art global router CUGR [22]. FastGR [26] proposes a

GPU-accelerated method for pattern routing and a heterogeneous

task graph scheduler to improve speed. Lin and Wong [20] in-

troduce a full-scale GPU-accelerated global router with multiple

parallelization techniques, achieving more than 13× speedup over

multithreaded CUGR [22].

Despite significant improvement in global routing efficiency

using GPU, the scalability issue in design size remains a challenge

for modern GPU-based global routers due to two reasons. First,

GPU memory is limited. This requires memory-efficient solutions

that can minimize CPU-GPU communication while maximizing

GPU utilization. Second, large designs have more nets with bigger

routing graphs, providing many new parallelization opportunities

that are not yet explored. To overcome these problems, we propose

new practical techniques to parallelize large-scale global routing.

Our contributions are summarized as follows.

• We introduce a newmethod for batch generation. Thismethod

is based on 3D fine-grained overlap checking and explores

more parallelism by increasing the number of nets per batch

(nets in a batch can be routed in parallel).

• We also propose a node-level parallel routing approach that

achieves much higher parallelism compared to traditional

net-level parallel routing.

• Based on the above two techniques, we have developed a

GPU-based scalable global router. Our global router outper-

forms the top-3 winners of the GPU/ML-Enhanced Large

Scale Global Routing contest in the International Symposium
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(a) G-cell partitioning. (b) Grid graph.

Figure 1: Global routing grid graph.

pins potential Steiner points potential edges congested areas 

(a) Basic routing DAG. (b) Augmented routing DAG.

Figure 2: Global routing using routing DAG.

on Physical Design (ISPD) 2024 in both runtime and quality.

The results demonstrate the effectiveness of our proposed

techniques in practice.

The rest of the paper is organized as follows. We first present

the preliminaries in Section 2. Next, we introduce two scalable

techniques for parallelizing large-scale global routing in Section 3

and Section 4. Lastly, Section 5 shows the experimental results

followed by the conclusions in Section 6.

2 PRELIMINARIES
2.1 Global Routing Formulation
In global routing, the multi-layer routing space is divided into a

set of global cells (G-cells) (Figure 1a). A grid graph 𝐺 (𝑉 , 𝐸) can be

obtained by regarding each G-cell as a vertex 𝑣 ∈ 𝑉 and creating an

edge 𝑒 ∈ 𝐸 between every two adjacent G-cells (Figure 1b). Edges

between same-layer and different-layer G-cells are called𝑤𝑖𝑟𝑒𝑠 and

𝑣𝑖𝑎𝑠 respectively. Note that each layer has a dedicated (horizontal or

vertical) routing direction that wires should follow. A net consists

of multiple pins located in different G-cells. The objective of global

routing is to connect all pins of each net using wire and via edges

while minimizing certain metrics such as wirelength, via count,

overflow, runtime, etc.

2.2 DAG-Based Global Routing
Our proposed parallel algorithm is mainly based on the DAG-based

global routing algorithm in CUGR2 [23]. In DAG-based global rout-

ing, we can construct a routing DAG, i.e., directed acyclic graph,

for each net to describe the set of 2D topologies we hope to explore.

Figure 2a shows a basic routing DAG for L-shape pattern routing

constructed using rectilinear Steiner minimum tree. Then, we can

use a dynamic programming algorithm to find the minimum cost

3D routing topology within the DAG efficiently. If some congested

areas can be detected before routing, it is also possible to augment

the routing DAG by adding alternative paths for congested edge

segments so as to facilitate congestion avoiding as illustrated in

Figure 2b.

Our proposed parallel routing scheme mainly consists of two

stages, initial routing, and rip-up and rerouting. In initial routing,

we construct a basic routing DAG to perform L-shape pattern rout-

ing. In rip-up and rerouting, we use the initial routing results to

identify congestion and augment the routing DAG accordingly

before rerouting.

The advantage of adopting the DAG-based routing style for

our parallel scheme is mainly two-fold. Firstly, the routing DAG

limits the search space for each net and reduces racing conditions.

Secondly, the routing DAG can also be used to accurately identify

the resources that each net will occupywhen routing, which enables

us to detect routing conflicts in a more fine-grained level. In our

parallel scheme, we propose a novel and extremely efficient batch

generation algorithm to maximize the number of nets in each batch

so as to boost net-level parallelism and reduce runtime. Besides, we

also propose a node-level parallel scheme that allows us to even

parallelize the calculation workload of a whole routing DAG.

2.3 Evaluation Metrics
In the ISPD2024 contest, routing results are evaluated by a weighted

sum of the total wirelength, via count, and overflow penalty [15]:

0.5

𝑀2 𝑝𝑖𝑡𝑐ℎ
·𝑇𝑜𝑡𝑎𝑙𝑊𝐿 + 4 ·𝑉𝑖𝑎𝐶𝑜𝑢𝑛𝑡 +𝑂𝑣𝑒𝑟 𝑓 𝑙𝑜𝑤𝑆𝑐𝑜𝑟𝑒 (1)

where TotalWL and ViaCount denote the sum of the wirelength

for all signal nets and the total number of vias respectively. The

overflow cost for a GCell edge with routing capacity 𝑐 and routing

demand 𝑑 at the 𝑙-th layer is calculated as follows:

𝑂𝑣𝑒𝑟 𝑓 𝑙𝑜𝑤𝐶𝑜𝑠𝑡 (𝑐, 𝑑, 𝑙) = 𝑂𝐹𝑊𝑒𝑖𝑔ℎ𝑡 [𝑙] · 𝑒𝑠 (𝑑−𝑐 )

𝑠 =

{
0.5, if 𝑐 > 0,

1.5, if 𝑐 ≤ 0.
(2)

where 𝑠 is a pre-defined scaling factor. A large 𝑠 is assigned to GCell

edges with zero capacity to penalize the use of obstructed GCell

edges. 𝑂𝐹𝑊𝑒𝑖𝑔ℎ𝑡 [𝑙] is the overflow weight for GCell edges at the

𝑙-th layer, which is given. 𝑂𝑣𝑒𝑟 𝑓 𝑙𝑜𝑤𝑆𝑐𝑜𝑟𝑒 is the summation of the

overflow costs for all GCell edges.

3 NET-LEVEL PARALLELISM
In this section, we present our approach to achievemassive net-level

parallelism by an efficient routing-graph-based overlap checking.

We first review existing net-level parallelization methods in Sec-

tion 3.1. Next, we will describe in Section 3.2 our new representation
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for routing graphs that naturally allows an efficient graph-based

exact overlap checking. Finally, we will present efficient algorithms

for overlap checking based on our routing graph representation in

Section 3.3.

Pins of net 1
Pins of net 2

Bounding box of net 1

Bounding box of net 2

Figure 3: Example of net-level parallelism: if nets 1 and 2 are
routed within their respective bounding boxes that do not
overlap, they can be routed in parallel.

3.1 Net-Level Parallelism
Net-level parallelism is a common technique to parallelize global

routing. It refers to simultaneous routing of a batch of nets that

do not “overlap” (i.e., do not use the same routing resources). For

example, nets 1 and 2 in Figure 3 can be routed in parallel if they are

routed within their own bounding boxes, because their bounding

boxes do not overlap. It is extensively used in modern global and

detailed routers [2, 3, 14, 19, 20, 22, 26], as most routing algorithms

will restrict the routing graph for a net to enhance efficiency. For

instance, Figures 4c and 4d show two example routing graphs of the

4-pin net depicted in Figure 4a (with RSMT in Figure 4b), both of

which occupy only a small portion of the entire routing region (51

and 98 out of 480 G-cells in Figure 4c and Figure 4d respectively).

(a) Four-pin net

Horizontal

Congestion

(b) RSMT (incomplete, dashed
edge shape to be determined)

Horizontal

Congestion

(c) RSMT-based L-shape
routing graph

Horizontal

Congestion

(d) RSMT-based augmented
L-shape routing graph [23]

Figure 4: Two routing graph examples

Net-level parallelism is typically implemented with batch gener-
ation and overlap checking. Batch generation uses overlap checking

engines to divide all the nets into batches, each of which consists

of non-overlapping nets that can be routed in parallel.

Batch Generation. Algorithm 1 shows a typical batch generation

approach used by many routers [2, 3, 14, 19, 20]. For each net 𝑛,

Algorithm 1 finds a batch that does not overlap with net 𝑛 (lines

3–8), or creates an empty batch if such batch does not exist (lines

9–11), and insert net 𝑛 into the batch.

Algorithm 1 A Typical Batch Generation Algorithm

Input: a set of nets 𝑁
Output: batch count𝑚, and batches of nets 𝐵𝑖 (𝑖 = 1, ...,𝑚)

1: 𝑚 ← 0

2: for net 𝑛 ∈ 𝑁 do
3: for 𝑏𝑎𝑡𝑐ℎ_𝑖𝑑 ← 1 to𝑚 do
4: if no overlap between 𝑛 and 𝐵𝑏𝑎𝑡𝑐ℎ_𝑖𝑑 then
5: add net 𝑛 to batch 𝐵𝑏𝑎𝑡𝑐ℎ_𝑖𝑑
6: break

7: end if
8: end for
9: if net 𝑛 has not been added to any batch then
10: 𝑚 ←𝑚 + 1
11: create 𝐵𝑚 ← {𝑛}
12: end if
13: end for

Overlap Checking. The bounding box is the minimum rectangle

covering a routing graph, which pessimistically approximates the

routing graph. This approximation is popular for overlap checking

used by many routers [19, 20, 22, 26] because of the simplicity of

rectangular shapes. To efficiently check the overlap of a net and a

batch of nets (line 4 of Algorithm 1), R-trees are the most efficient

data structure. However, the use of bounding boxes and R-trees

have the following drawbacks. First, the pessimism of bounding

box approximation significantly lowers the degree of parallelism.

Second, complex data structures such as R-trees are still needed

even when the routing graphs are approximated by some simple

bounding boxes. To address these drawbacks, we introduce a new

segment-based accurate representation for routing graphs that can

achieve massive net-level parallelism. Figure 5a shows four nets

with non-overlapping L-shape routing graphs but their bounding

boxes are pairwise overlapped. These four nets will be divided into

just one batch based on our exact representation of routing graphs

for overlap checking, while into four batches by the traditional

bounding box-based pessimistic approximation. Compared with

R-trees for box overlap query, our new representation is more

straightforward, allowing us to simplify the overlap checking of

routing graphs into a 1D segment overlap problem. Based on some

useful observations, we will discuss our efficient overlap checking

algorithm tailored for global routing scenarios in the following

sections.

3.2 Routing Graph Representation
In the formulation of the ISPD2024 contest [15], the routing re-

sources are all wires, and the use of both wires and vias consumes

wire resources. Our representation of routing graphs uses horizon-

tal and vertical segments. Such a representation can be obtained

by converting all possible wires and vias of the routing graph into

For the “overlap” circled in dash line in Figure 5a, there is actually no overlap because

horizontal and vertical wires are on different metal layers, as shown in Figure 5b.
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Horizontal and vertical 
paths in different layers

OVERLAP! NO OVERLAP!

Bounding boxes 
of routing graphs

Actual routing graphs

(a) For RSMT-based L-shape pattern routing, the routing graphs of
these four nets do not overlap but their bounding boxes overlap.

(b) Three-dimensional view to illustrate no overlap between hori-
zontal and vertical paths (only showing two layers with horizontal
and vertical routing directions for the bottom and top layers respec-
tively).

Figure 5: Net-level parallelism for L-shape routing

segments according to their routing resources usage. We formally

define the representation below.

Definition 1. (Segment) A horizontal segment, denoted byℎ𝑠 (𝑦, 𝑥𝑙 , 𝑥𝑟 ),
represents all horizontal wires between (𝑥𝑙 , 𝑦) and (𝑥𝑟 , 𝑦) in horizon-
tal routing layers. A vertical segment 𝑣𝑠 (𝑥,𝑦𝑙 , 𝑦𝑟 ) is defined similarly.

Definition 2. (Routing Graph) A routing graph 𝐺 = (𝐻𝑆,𝑉𝑆) is
represented by a set of horizontal segments 𝐻𝑆 and a set of vertical
segments 𝑉𝑆 .

Definition 3. (Segment Overlap) Two horizontal segments,ℎ𝑠 (𝑦0, 𝑥0𝑙 , 𝑥0𝑟 )
and ℎ𝑠 (𝑦1, 𝑥1𝑙 , 𝑥1𝑟 ), overlap if [𝑥0𝑙 , 𝑥0𝑟 ] and [𝑥1𝑙 , 𝑥1𝑟 ] overlap, and
𝑦0 = 𝑦1. Overlap of vertical segments is similarly defined. There is no
overlap between horizontal and vertical segments, because they are
on different layers.

Definition 4. (Routing Graph Overlap) Two routing graphs 𝐺0 =

(𝐻𝑆0,𝑉𝑆0) and 𝐺1 = (𝐻𝑆1,𝑉𝑆1) overlap if there exist two overlap-
ping horizontal segments ℎ𝑠0 ∈ 𝐻𝑆0 and ℎ𝑠1 ∈ 𝐻𝑆1 or two overlap-
ping vertical segments 𝑣𝑠0 ∈ 𝑉𝑆0 and 𝑣𝑠1 ∈ 𝑉𝑆1.

We will illustrate how to construct such a representation for a

routing graph using Figure 4c as an example. For each of the wire

segments in Figure 4c, we construct a corresponding horizontal or

vertical segment. For each of the possible via locations (there are

seven such locations in Figure 4c), we construct horizontal segments

and vertical segments to account for its wire demands as shown in

Figure 6, according to the via model described in [15]. These two

simple steps complete the process of generating a representation

Formally speaking, [𝑥0𝑙 , 𝑥0𝑟 ] and [𝑥1𝑙 , 𝑥1𝑟 ] overlap if there exists an integer 𝑥 s.t.

𝑥0𝑙 ≤ 𝑥 ≤ 𝑥0𝑟 and 𝑥1𝑙 ≤ 𝑥 ≤ 𝑥1𝑟 .

for the L-shape routing graph in Figure 4c. The representation of

any given routing graph can be generated in a similar fashion.

𝑥 𝑥 + 1𝑥 − 1

𝑦

𝑦 + 1

𝑦 − 1

Representation of vias
at (𝑥, 𝑦) in a routing graph:

Horizontal segment ℎ𝑠 𝑦, 𝑥 − 1, 𝑥 + 1
Vertical segment 𝑣𝑠 𝑥, 𝑦 − 1, 𝑦 + 1

(a) Modeling vias as
wire demands [15]

𝑥 𝑥 + 1𝑥 − 1

𝑦

𝑦 + 1

𝑦 − 1

Representation of vias
at (𝑥, 𝑦) in a routing graph:

Horizontal segment ℎ𝑠 𝑦, 𝑥 − 1, 𝑥 + 1
Vertical segment 𝑣𝑠 𝑥, 𝑦 − 1, 𝑦 + 1

(b) Segment representation of vias

Figure 6: Via representation by our routing graph segments.

3.3 Efficient Overlap Checking Algorithms
In this subsection, we will introduce our efficient algorithms for

graph-based overlap checking. For convenience, we will explain

the algorithms with horizontal segments on an 𝑋 × 𝑌 grid graph.

Vertical segments can be handled similarly.

According to Definition 3, one necessary condition for two hor-

izontal segments ℎ𝑠 (𝑦0, 𝑥0𝑙 , 𝑥0𝑟 ) and ℎ𝑠 (𝑦1, 𝑥1𝑙 , 𝑥1𝑟 ) to overlap is

𝑦0 = 𝑦1. Therefore, we will group the segments with the same

𝑦 and the overlap checking problem becomes a one-dimensional

overlap checking problem of [𝑥0𝑙 , 𝑥0𝑟 ] and [𝑥1𝑙 , 𝑥1𝑟 ]. We need a

data structure 𝑆 supporting the following operations to facilitate

overlap checking in batch generation (Algorithm 1).

• Insertion. Insert a segment 𝑠 = [𝑥𝑙 , 𝑥𝑟 ] to 𝑆 .
• Query. Given a segment 𝑠𝑞 = [𝑥𝑙 , 𝑥𝑟 ], check if 𝑠𝑞 intersects with

any segment 𝑠 ∈ 𝑆 .
This is a classical computational geometry problem that can be

efficiently solved by segment trees [1] in 𝑂 (log𝑛) time for both

operations, where 𝑛 is the length of the range involved. However, in

the context of routing graph overlap checking, we have developed

faster algorithms by leverage the following observations.

Observation 1: short segments. In the largest design of the ISPD

2024 contest [15], the average horizontal segment length in the

RSMTs is only 12 on a 9245×12544 grid graph. Long wires lead

to large signal delay, and, hence, are optimized in stages before

routing, such as placement.

Since segments are very short, we can simply use a Boolean

array to record whether each point in [1, 𝑛] is covered by some

segment 𝑠 ∈ 𝑆 . We mark every point 𝑥 ∈ [𝑙, 𝑟 ] when a segment [𝑙, 𝑟 ]
is inserted, and check every point 𝑥 ∈ [𝑙𝑞, 𝑟𝑞] for overlap query

of a segment [𝑙𝑞, 𝑟𝑞]. This point exhaustion approach is simple yet

efficient because of the short average length of the segments. We

show the pseudo code of point exhaustion in Algorithm 2.
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Algorithm 2 Point Exhaustion

1: initialize [𝑏1, ..., 𝑏𝑛 ] = [0, ..., 0]
2: procedure Insert(𝑠) ⊲ segment 𝑠 = [𝑙, 𝑟 ]
3: for 𝑖 ← 𝑙 to 𝑟 do
4: 𝑏𝑖 ← 1

5: end for
6: end procedure
7: procedure Query(𝑠) ⊲ segment 𝑠 = [𝑙, 𝑟 ]
8: for 𝑖 ← 𝑙 to 𝑟 do
9: if 𝑏𝑖 equal to 1 then
10: return overlap

11: end if
12: end for
13: return no overlap

14: end procedure

We can further improve the efficiency of this point exhaustion

by using bit arrays, which are effective at exploiting bit-level paral-

lelism in hardware to perform operations quickly [31] (also known

as bitsets). Take Algorithm 2 with 𝑛 = 64 as an example. We can

use one 64-bit integer 𝑖 to store the Boolean values of [𝑏1, ..., 𝑏64].
When a segment, say [1, 16], is inserted, we can simply perform

a bitwise OR operation between 𝑖 and 65535, whose binary repre-

sentation is 48 leading 0’s followed by 16 trailing 1’s. This 𝑂 (1)
operation is equivalent to setting the least significant 16 bits of 𝑖

to 1. Similarly, for a query, we can use a bitwise AND operation to

check if a certain bit range of 𝑖 , corresponding to the query segment,

has any 1. This technique helps reduce the processing time of long

segments and has demonstrated its high efficiency experimentally,

which will be shown in Section 5.1.

Observation 2: more queries than insertions. As shown in

Algorithm 1, each net needs multiple queries (line 4) until a non-

overlapping batch is found while performing only one insertion

(line 5/10) to the batch found. The actual query-insertion ratio

depends on the overlap rate affected by both benchmarks and al-

gorithms. Preliminary experiments show 30× more queries than

insertions in the largest design of the ISPD2024 contest benchmarks.

Based on this observation, we develop a fast algorithm, repre-
sentative point exhaustion, for non-exact overlap checking, which

achieves increased parallelism and reduced runtime by allowing a

little bit of overlap. Representative point exhaustion is identical to

point exhaustion except that it only checks the two end points of

a query segment. This simplified algorithm for answering queries

greatly reduces the number of points that need to be checked while

covering most overlap scenarios in practice. The only scenario that

this algorithm fails to find the overlap of two overlapping segments

is when the query segment [𝑙𝑞, 𝑟𝑞] contains the overlapping seg-

ment [𝑙, 𝑟 ], [𝑙, 𝑟 ] ⊂ [𝑙𝑞, 𝑟𝑞] (but not vice versa). Empirically, there

is only about 2% overlap in length by representative point exhaus-

tion. Batch generation using representative point exhaustion offers

higher parallelism in shorter runtime, which is useful for routing

algorithms that are insensitive to a little overlap.

4 NODE-LEVEL PARALLELISM
To accelerate the dynamic programming on an augmented DAG,

a straightforward approach might be to route all the nodes simul-

taneously. However, in the DAG-based routing, a node’s cost is

calculated by aggregating its incoming nodes’ costs (For example,

the cost of node 𝑎 is partially determined by the costs of nodes 𝑏 and

𝑐 in Figure 7b). There is thus a dependency relationship between

nodes. We model this dependency as “depth”. The root node will

have a depth of 0, and the depth of any node is one deeper than

its deepest incoming nodes. By routing nodes of the same depth in

parallel, we can achieve node-level parallelism.

(a) Batch0 (b) Batch1

(c) w/o node-level parallelism

(d) w/ node-level parallelism

Figure 7: An example of node-level parallelism

Figure 7 illustrates an example of how we route nets batch by

batch with node-level parallelism. Suppose we have 4 nets, Net A,

B, C and D in our grid graph. Since nets with overlap cannot be

routed together, Net A and B are distributed to batch 0, as shown

in Figure 7a, and nets C and D are distributed to batch 1. Figure 7c

shows the task distribution of a net-level parallel strategy, i.e. rout-

ing each net by one thread. Let𝐷0 ∼ 𝐷6 denote depth 0 to 6,𝑇0 ∼ 𝑇1
denote thread 0 to 1. We can only utilize 2 threads to route 2 nets,

and a total of 7 steps are needed to finish batch 0 and a total of 4

steps are needed to finish batch 1. However, in Figure 7c, by routing

nodes with the same depth simultaneously, we only need 4 steps to
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Table 1: Benchmark Details [15].

Benchmark (BM) #Nets #Pins Gcell Grid

0 Ariane_sample 129K 420K 844 × 1144
1 MemPool-Tile_sample 136K 500K 475 × 644
2 NVDLA_sample 177K 630K 1240 × 1682
3 BlackParrot_sample 770K 2.9M 1532 × 2077
4 MemPool-Group_sample 3.3M 10.9M 1782 × 2417
5 MemPool-Cluster_sample 10.6M 40.2M 3511 × 4764
6 TeraPool-Cluster_sample 59.3M 213M 7891 × 10708
7 Ariane_rank 128K 435K 716 × 971
8 MemPool-Tile_rank 136K 483K 429 × 581
9 NVDLA_rank 174K 610K 908 × 1682
10 BlackParrot_rank 825K 2.9M 1532 × 2077
11 MemPool-Group_rank 3.2M 10.9M 1782 × 2417
12 MemPool-Cluster_rank 10.6M 40.2M 4113 × 5580
13 TeraPool-Cluster_rank 59.3M 213M 9245 × 12544

finish batch 0 and 3 steps to finish batch 1. In total, we need 7 steps

to route with node-level parallelism, which is 4 steps less than the

net-level parallel strategy.

To calculate the depths of the nodes, we can make use of a

recursive algorithm similar to the one finding a topological sort in

a graph. First, we initialize the depth of the root node to 0. Then,

we compute the depth of the remaining nodes recursively. When

the depths of all the outgoing nodes of a node are determined, we

set the depth of the current node as one plus the depth of maximum

depth of all its outgoing nodes.

5 EXPERIMENTAL RESULTS
We conducted our experiments on a 64-bit Linux workstation with

Intel Xeon Gold 6326 CPUs (2.90 GHz) and 256 GB memory. To

be consistent with the the ISPD2024 contest environment [15], all

the experiments were run with 4 NVIDIA A800 GPUs and 8 CPU

threads. We used the same benchmarks (details shown in Table 1)

and evaluator as in the contest [15].

5.1 Overlap Checking
To demonstrate the effectiveness of our new routing graph repre-

sentation and algorithms, we compare different overlap checking

approaches on the two most challenging benchmarks, 12 and 13.

These two benchmarks have themost number of nets and the largest

grid graphs, and their experimental results are shown in Table 2.

We can measure the degree of parallelism by the number of batches.

Since the nets in a batch can be routed in parallel, fewer batches im-

ply more parallelism. We can see that using routing graphs to form

batches are orders of magnitude better than using bounding boxes.

For example, on benchmark 13, graph-based geometry produces

hundreds of batches while box-based geometry generates tens of

thousands of batches. This is not surprising because routing graphs

are much more accurate than bounding box approximation at the

cost of having more complex geometry. However, we overcome the

complexity of using graph-based geometry by our segment-based

representation and efficient point exhaustion algorithms. The effec-

tiveness of our method is confirmed by the short runtime shown in
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Figure 8: Scalability comparisons of different overlap check-
ing methods (experiments on benchmarks 7–13)

Table 2, which is significantly smaller than that of using R-trees for

bounding boxes or using segment trees for our representation.

We present the batch generation results of benchmarks 7–13

in Figure 8 to demonstrate the scalability of our approach. When

the number of nets increases, our method increases slower than

the traditional box-based R-tree method in terms of both batch

count and runtime. The exceptional scalability shows the practical

usefulness of our method even when modern integrated circuits

keep increasing in size and complexity.

5.2 Global Routing
We conduct our experiments on the ISPD2024 contest benchmark

suites[15] and evaluate the results using the official evaluator of

the contest. For a fair comparison, we obtained the top 3 teams’

binary files and evaluated them on our machine using their default

settings.

Compared to the first-place team, our router produces an average

of 100.55% wirelength and 98.83% overflows, and with significantly

fewer vias (82.54%). The comparison of summed score on all cases

are shown in Table 3. In the table, the “Score” is given by the evalu-

ator, which is computed using Equation (1). Our router achieves the

best total scores in all cases, with a 2.01× acceleration compared

to the first-place team, demonstrating the significant advantage of

our novel batch generation algorithm and node-level parallelism.

5.3 Node-Level Parallelism
In this section, we will discuss our ablation study on node-level

parallelism. For comparison, we implemented a net-level and a

node-level parallel kernel function. This kernel function is invoked
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Table 2: Batch Generation Results with Different Overlap Checking Methods on Two Largest Benchmarks

Geometry Method

Benchmark 12 Benchmark 13

Overlap

#Batches Time (s) #Batches Time (s)

Bounding Box of

Routing Graph

R-Tree 4748 1742 26038 36033 No

R-Tree (1000
†
) 10109 281 46892 5322 No

Segment-Based

Routing Graph (Ours)

Segment Tree 515 127 554 1101 No

Point Exhaustion 515 35 554 297 No

Point Exhaustion (Bitset) 515 27 554 239 No

Representative Point Exhaustion 383 14 527 105 2% Length

†
The number of nets per batch is limited to 1000.

Table 3: Experimental Results of Top-3 Global Routers of ISPD2024 Contest and InstantGR

Benchmark

1st Place 2nd Place 3rd Place InstantGR

Score Time (s) Score Time (s) Score Time (s) Score Time (s)

0 19789143 3.44 20099496 2.10 19897356 1.62 19716744 2.55

1 15241650 2.95 15432389 1.97 15280353 1.86 15126510 2.56

2 48257027 5.60 48837685 3.31 48257010 3.87 47982224 3.73

3 113562198 8.20 113321049 18.49 112592863 18.25 112474880 14.64

4 398169317 56.59 411758419 35.53 403915333 27.21 397658013 35.78

5 1626227314 231.87 1665748885 142.16 1639553927 200.70 1623946297 116.63

6 19609525592 2821.53 19684092627 2115.14 19730043753 2748.29 19139291553 1289.02

7 22602876 3.75 23093501 2.81 22821289 1.72 22545800 2.98

8 13827142 2.49 14133269 2.45 13867124 1.46 13774789 2.87

9 43195979 4.97 44141552 4.29 43295092 4.14 43047147 3.83

10 113109620 16.71 110986781 15.87 111778586 9.71 109844055 9.45

11 383637652 43.75 395488859 40.20 388200338 29.42 382639889 36.35

12 1782191834 214.00 1824527054 148.90 1795524941 229.85 1780897390 117.75

13 12528609838 1654.27 12676067016 1338.30 12597498026 2181.39 12257767067 882.66

Average 2622710513 362.15 2646266327 276.54 2638751857 389.96 2569050883 180.06

Ratio 1.02 2.01 1.03 1.54 1.03 2.17 1.00 1.00

during the dynamic programming process of updating the costs of

the nodes and tracing paths. We will invoke the net-level function

once for each batch, while the node-level function will be invoked

as many times as the maximum depth in a batch. Other parts of

the code are the same in the two versions. The detailed results are

shown in Table 4.

When routing nets in batches, the net-level parallel algorithm

will use a thread to route one net. Therefore, the bottleneck of each

batch is the net with the highest number of nodes. This is shown

in Table 4, where we list the sum of node counts for the bottleneck

nets in all batches. In contrast, in our node-level parallel approach,

the bottleneck for each batch comes from the net with the largest

depth, which is significantly less (14.3×) than the number of nodes.

The reason for the substantial ratio of node to depth in Table 4 is

that during the augmented DAG routing phase, a large number of

alternative paths are added to find a path that minimizes congestion

as much as possible. This results in having many nodes of the same

depth, which makes our node-level parallelism much more effective.

We also compare the running time of the two versions of CUDA

kernel function in Table 4. Experiments show that our node-level

parallelism can accelerate routing efficiently, which is on average

10.7× faster than the typical net-level parallel strategy.

6 CONCLUSIONS
In this work, we have achieved a breakthrough compared to the tra-

ditional bounding box-based overlap checking methods, developing

a precise and efficient batch generation algorithm. Our algorithm

significantly increases the number of nets per batch for parallel rout-

ing, thereby fully unlocking the advantage of GPUs over CPUs. This

algorithm has the potential to be applied in many other routers that

involve net-level parallelism. Besides, we also propose a node-level

parallel algorithm to process nodes with the same depth, which

further accelerated our program. Experiments on ISPD 2024 contest

benchmark show that our algorithm can achieve 2.1% improvement

in quality and 2.01× acceleration compared to the first place.
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